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Abstract

In the Multi-Objective Shortest Path Problem (MO-SPP), one has to find paths on a

graph that simultaneously minimize multiple objectives. It is not guaranteed that there

exists a path that minimizes all objectives, and the problem thus aims to find the set

of Pareto-optimal paths from the start to the goal vertex. A variety of multi-objective

A*-based search approaches have been developed for this purpose. Typically, these ap-

proaches maintain a front set at each vertex during the search process to keep track of

the Pareto-optimal paths that reach that vertex. Maintaining these front sets becomes

burdensome and often slows down the search when there are many Pareto-optimal

paths. In this article, we first introduce a framework for MO-SPP with the key pro-

cedures related to the front sets abstracted and highlighted, which provides a novel

perspective for understanding the existing multi-objective A*-based search algorithms.

Within this framework, we develop two different, yet closely related approaches to

maintain these front sets efficiently during the search. We show that our approaches

can find all cost-unique Pareto-optimal paths, and analyze their runtime complexity.
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We implement the approaches and compare them against baselines using instances

with three, four and five objectives. Our experimental results show that our approaches

run up to an order of magnitude faster than the baselines.

Keywords: Heuristic Search, Multi-Objective Optimization, Path Planning

1. Introduction

Given a graph with non-negative scalar edge costs, the Shortest Path Problem (SPP)

calls for computing a minimum cost path from a given start vertex to a given destina-

tion vertex in the graph. In this article, we consider the Multi-Objective Shortest Path

Problem (MO-SPP) [1, 2, 3, 4], which generalizes SPP by associating each edge in5

the graph with a non-negative cost vector of constant length, where each component

of the vector corresponds to an objective to be minimized. MO-SPP arises in many

applications, including hazardous material transportation [5], robot design [6], robot

inspection planning [7, 8] and airport departure runway scheduling [9].

For example, the hazardous material transportation [5] is a path planning problem10

from a starting location to a destination in an urban area. The problem calls for comput-

ing the shortest path to transport the material while accounting for vulnerable centres

such as schools, hospitals, etc. This requires balancing travel distance and risk of ex-

posure (see, e.g., [10]). The problem has been efficiently solved using heuristic-search

approaches for the bi-objective case [11].15

For MO-SPP, it is not guaranteed that there exists a path that simultaneously opti-

mizes all objectives. MO-SPP thus seeks to find a Pareto-optimal set of paths, whose

cost vectors form the Pareto-optimal front. Here, a path is Pareto-optimal (or, synony-

mously, non-dominated) if there is no other path that can decrease one cost without

increasing at least one of the other costs. Unfortunately, computing the Pareto-optimal20

front is challenging [12] as its cardinality may be exponential in the number of ver-

tices [13, 14, 15].

To solve MO-SPP, several multi-objective A* (MOA*)-like planners [2, 3, 11, 16,

17, 18] have been developed to compute the exact or an approximate Pareto-optimal

front. In MO-SPP, there are typically multiple non-dominated paths from the start25
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vertex to any other vertex in the graph, and MOA*-like planners store, select and ex-

pand these non-dominated paths at each vertex during the search. When a new path π

to some vertex v is found, π needs to be compared with all previously found non-

dominated paths to v to check for dominance, namely, to verify whether π is dominated

by any other existing paths that reach v. These dominance checks are computationally30

expensive, especially when there are many non-dominated paths at a vertex, as it re-

quires many cost vector comparisons [19].

To find the Pareto-optimal front efficiently, techniques have recently been devel-

oped to expedite these dominance checks for MOA*-like planners [11, 19]. Among

them, Bi-Objective A* (BOA*) [11] achieves around an order of magnitude speed-up35

over previous state-of-the-art MOA*-like search algorithms. Recently, BOA* has been

improved further [16, 17]. However, BOA* and its improved versions can handle only

two objectives. We thus develop fast general dominance-checking methods that can

handle an arbitrary number of objectives. To this end, we propose a search framework

called Enhanced Multi-Objective A* (EMOA*), which abstracts and highlights the key40

procedures related to these expensive dominance checks during the MOA* search. This

framework provides a novel perspective to understanding various existing MOA*-like

search algorithms while highlighting the computational bottleneck bypassed in this ar-

ticle. The specific enhancement in EMOA* against the existing MOA* search is the

identification of key sub-problems during the search process, and the use of fast data45

structure and algorithms to solve these key sub-problems during the search. Further-

more, we show that BOA* is a specific instantiation of EMOA* when there are only

two objectives.

Within the EMOA* framework, we further develop two different, yet closely-

related algorithms for fast dominance checking, by leveraging the existing ideas and50

techniques in the literature [20, 21, 22, 23]. Both algorithms can handle an arbitrary

number of objectives. Specifically, we first develop a new method that uses a balanced

binary search tree (BBST) to store the non-dominated paths at each vertex. The key

ideas are: (i) the BBST can be incrementally constructed during the MOA* search and

is computationally efficient to maintain; (ii) the BBST is organized using the lexico-55

graphic order between cost vectors, which guides the dominance checks and expedites
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the computation; and (iii) our BBST-based method is compatible with existing ap-

proaches for fast dominance checking, which allows us to use both the existing and our

newly developed techniques together to speed up the computation of the Pareto-optimal

front.60

As an alternative to this BBST-based algorithm, we also propose a second algorithm

based on lexicographically sorted lists and Binary Search (BS), which further improves

the computational efficiency of the BBST-based approach by reducing the frequent

rotation operations needed to re-balance the search tree.

We show that both the BBST-based and BS-based algorithms are guaranteed to65

find the exact Pareto-optimal front for MO-SPP. We analyze the runtime complexity

of the proposed methods. To verify our EMOA* framework, we implement several

algorithms that follow our framework by using different data structures and approaches

for dominance checking. We compare these implementations on instances with three,

four and five objectives. Our experimental results show that our methods run up to an70

order of magnitude faster than an existing state-of-the-art method [19].

Preliminary versions of this work appeared in [24] and [25] which presented two

instantiations of EMOA*. This article differs from the aforementioned work by intro-

ducing the general EMOA* framework we present, including a comprehensive descrip-

tion and discussion of EMOA* as well as a detailed analysis of the two algorithms that75

appeared in [24] and [25], including proofs of their solution quality guarantees and

runtime complexities. Finally, we present new experimental results of both algorithms

in various test settings.

1.1. Related Work

Research on MO-SPP and its variants has a long history [1, 2, 3] and remains an80

active research topic [11, 16, 17, 26, 27]. Algorithms that solve MO-SPP range from

exact methods [2, 3, 11] to approximation methods [16, 28, 29, 30, 31], trading off solu-

tion quality for computational efficiency. Among the exact methods, Multi-Objective

A* [2] is one of the first approaches to extend the well-known A* algorithm [32] to

address multiple objectives, and was later revised and expedited by A New Approach85

to Multi-Objective A* (NAMOA*) [33]. NAMOA* was further improved and led to
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NAMOA*dr [19], where they use a technique based on “dimensionality reduction”,

which can reduce the length of the vectors by one when running dominance checks dur-

ing the A*-like search. All these three algorithms [2, 19, 33] can address an arbitrary

number of objectives. The recent BOA* [11] further expedites NAMOA*dr by intro-90

ducing the idea of lazy dominance checks which allows to perform dominance checks

in constant-time. However, BOA* is limited to bi-objective problems only. BOA* and

NAMOA*dr, as state-of-the-art algorithms for bi-objective problems and general multi-

objective problems respectively, are two closely related algorithms to this article, and

will be revisited with more details in Sec. 3.95

As the aforementioned algorithms extend A*, they can make use of a heuristic func-

tion to expedite the search. In the single-objective setting, the search needs to consider

only one minimum cost path from any vertex to the destination, and the heuristic func-

tion maps each vertex to a single-value which estimates the cost-to-go to reach the

destination from that vertex. In contrast to the single-objective setting, from every ver-100

tex there may be multiple paths that belong to the Pareto-optimal front in the presence

of multiple objectives. Thus, a heuristic function may map each vertex to a set of val-

ues, i.e., a set of cost vectors that estimate the cost-to-go to reach the destination from

that vertex. Such a heuristic is called a multi-valued heuristic [3]. While recent papers

explored the use of multi-valued heuristics (see, e.g., [34, 35]), the lion’s share of stud-105

ies on MO-SPP use a single-valued heuristic where we store only one cost vector per

vertex. This paper considers only single-valued heuristics.

Additionally, given a set of vectors, to efficiently compute the subset of vectors that

are mutually non-dominated, a variety of approaches have been developed. For exam-

ple, given a set of n vectors, Kung’s method [20] has a worst-case runtime complexity110

O(n log n) when the vectors are of length two or three, and O(n logm−2 n) when the

vectors are of length m,m > 3. Other approaches (e.g., [21, 22]) run in O(mn) time

on average. Additionally, tree-based data structure has also been leveraged to speed up

dominance comparisons [23].
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2. Problem Description115

Let G = (V,E, c⃗) denote a finite directed graph with vertex set V and edge

set E, where each edge e = (u, v) ∈ E is associated with a non-negative cost vec-

tor c⃗(e) = c⃗(u, v) ∈ (R+)M with M being a positive integer and R+ being the set

of non-negative real numbers. Let π(v1, vℓ) denote a path connecting v1, vℓ ∈ V via

a sequence of vertices (v1, v2, . . . , vℓ) in G, where vn and vn+1 are connected by an120

edge (vn, vn+1) ∈ E, for n = 1, 2, . . . , ℓ − 1. Let g⃗(π(v1, vℓ)) denote the cost vector

corresponding to the path π(v1, vℓ), which is the sum of the cost vectors of all edges

present in the path, i.e., g⃗(π(v1, vℓ)) = Σℓ−1
n=1c⃗(vn, vn+1). We use ck with a subscript k

to denote the k-th component of the vector c⃗. To compare any two paths, we compare

the cost vectors associated with them using the dominance relation [14]. Intuitively,125

given two vectors a⃗ and b⃗, we say a⃗ dominates b⃗ if (i) every value of a⃗ is lower than

or equal to the corresponding value of b⃗ and (ii) at least one value of a⃗ is strictly lower

than the corresponding value of b⃗. Formally, we have the following definition.

Definition 1 (Dominance) Given two vectors a⃗ and b⃗ of length K (K ≥ 2)1, a⃗ dom-

inates b⃗ (denoted as a⃗ ≺ b⃗) 2 if and only if ∀k ∈ {1, 2, . . . ,K}, ak ≤ bk, and130

∃k ∈ {1, 2, . . . ,K} such that ak < bk.

Let vo, vd denote the start and destination vertices, respectively. A path from vo

to vd is also called a solution. One solution π1 dominates another solution π2 if the

cost vector g⃗(π1) dominates g⃗(π2). The set of all non-dominated solutions is called

the Pareto-optimal set. A subset of the Pareto-optimal set, where any two solutions in135

this subset do not have the same cost vector is called a cost-unique Pareto-optimal set.

Fig. 1 provides an illustration of these concepts.

Definition 2 (MO-SPP) Given a graph G = (V,E, c⃗), vo and vd, the Multi-Objective

1Note that K is the length of the vector and M is the number of objective; K may be equal to M but
does not necessarily have to.

2In the literature, other symbols such as ⪯, ⪰ and ≻ are also frequently used to denote the dominance
relation between two vectors. We choose to use ≺ in this article since the goal here is to minimize costs.
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Figure 1: An illustration of dominance. (a) An MO-SPP problem with two objectives (M = 2). (b) Visu-
alization of all solutions (without loops) and their corresponding cost vectors, where the green dots are the
Pareto-optimal cost vectors and the yellow dots are the dominated ones. (c) Visualization of the solution cost
vectors. The x-axis corresponds to objective 1 and the y-axis corresponds to objective 2. The green region
in (c) visualizes the set of vectors that are dominated by (16, 3). Note that (16, 3) dominates (20, 11), and
(6, 11) dominates both (12, 21) and (20, 11).

Shortest Path Problem (MO-SPP) requires computing a maximal cost-unique Pareto-

optimal set.140

Finally, we introduce a few notations to simplify the subsequent presentation. The

cost vectors corresponding to a maximal cost-unique Pareto-optimal set is called the

Pareto-optimal front. Given two vectors a⃗ and b⃗ of the same length K (with K ≥ 2),

we say that a⃗ weakly dominates b⃗ (⃗a ⪯ b⃗), if every component in a⃗ is less than or equal

to b⃗ (i.e., ∀k ∈ {1, 2, . . . ,K}, ak ≤ bk). Note that, a⃗ ⪯ b⃗ is equivalent to a⃗ ≺ b⃗ or145

a⃗ = b⃗. Given two vectors a⃗ and b⃗ of the same length K (with K ≥ 2), let a⃗ <lex b⃗

represent that a⃗ is lexicographically smaller than b⃗. Similarly, >lex, ≤lex, ≥lex can

be defined between a⃗ and b⃗. Given a set B of vectors of the same length, B is called

a set of cost-unique non-dominated vectors if any two vectors a, b ∈ B satisfy that

a ⊀ b, b ⊀ a and a ̸= b. Additionally, given a set B of vectors of the same length,150

let ND(B) denote the maximal cost-unique non-dominated subset of vectors in B.

Finally, let Trunc : RK → RK−1 denote a truncation function that removes the first

component from the input vector, and we use Trunc(⃗a) to denote the truncated vector

corresponding to a⃗.
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Figure 2: The relationship of different approaches under the EMOA* framework.

3. Enhanced Multi-Objective A* (EMOA*) Framework155

This section begins by introducing the basic concepts and notations in Sec. 3.1 and

then presents our EMOA* framework in Sec. 3.2. We then present two instantiations

of the EMOA* framework in Sec. 3.3 and Sec. 3.4, depending on when to conduct

the dominance checking during the search. For both instantiations, there are three key

abstract procedures related to dominance checking, and we define the corresponding160

sub-problems that need to be solved by these procedures in Sec. 3.5. Finally, we discuss

the properties of EMOA* in Sec. 3.6. The relationship of different approaches are

summarized in Fig. 2.

3.1. Basic Concepts

Let l = (v, g⃗) denote a label3, which is a tuple of a vertex v ∈ V and a cost vector g⃗.165

A label represents a path from vo to v with cost vector g⃗. To simplify the presentation,

given a label l, let v(l) and g⃗(l) denote the vertex and the cost vector contained in

label l, respectively. Two labels l, l′ are comparable only when v(l) = v(l′), and a

label l is said to be dominated by (or is equal to) another label l′ if g⃗(l) ≺ g⃗(l′) (or

g⃗(l) = g⃗(l′)).170

Let h⃗(v), v ∈ V denote a heuristic that estimates the cost-to-go from v to vd.

As mentioned, we limit ourselves to single-valued heuristics in this paper. If every

component of h⃗(v), v ∈ V is no larger than the corresponding component of the cost

vector of any possible path from v to vd, then h⃗ is referred to as an admissible heuristic.

3To identify a path, different names, such as nodes [11] and labels [36, 37], have been used in the multi-
objective path-planning literature. This article uses “labels” to identify paths and reserves “nodes” for the
tree nodes in the balanced binary search tree in the ensuing section.
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If a heuristic satisfies h⃗(v) ≤ h⃗(u) + c⃗(u, v),∀u, v ∈ V (intuitively speaking, the175

triangle inequality), then h⃗ is called a consistent heuristic. A consistent heuristic is

always admissible if h⃗(vd) = 0⃗, i.e., the heuristic vector of the goal vertex is a zero

vector.

Throughout this paper we will use the so-called “ideal-point heuristic” h⃗ideal which

combines a set of M single-objective heuristics h1, . . . , hM . Let πideal
i (v, vd) denote180

a minimum cost path from each vertex v ∈ V to vd according to the i-th objective, and

let hi denote the cost value of the path πideal
i (v, vd). Then, this ideal-point heuristic

is defined as h⃗ideal(v) := (h1(v), . . . , hM (v)). The ideal-point heuristic, which is

consistent, is easily computed by running M single-objective instances of Dijkstra’s

algorithm starting backwards from the destination vd to all other vertices in G, i.e.,185

one instance for each objective. Within the EMOA* framework, specific instantiations

require consistent heuristics in order to use some fast dominance checking techniques.

For the rest of the paper, we assume the heuristic is consistent.

The f⃗ -vector of a label l is defined as f⃗(l) := g⃗(l) + h⃗(v(l)) and let OPEN denote

a priority queue of labels. At any time during the search, OPEN contains labels that190

will be either expanded or discarded in future iterations of the search. While there

are many ways to order OPEN can be ordered (see [38]), here we limit the discussion

to the setting where labels in OPEN are prioritized by their corresponding f⃗ -vectors in

lexicographic order from the minimum to the maximum. This is a widely used ordering

scheme in MOA* search [11, 19, 24].195

Additionally, the search needs to store the non-dominated paths from vo to any

other vertex u ∈ V . Let parent(l) denote the parent pointer of label l that represents

the label from which l is generated. By iteratively backtracking the parent pointers

of l, a path from vo to v(l) can be reconstructed. Let Fopen(u), u ∈ V denote a

set of non-dominated labels l at vertex u (i.e., v(l) = u) that are in OPEN. In other200

words, labels in Fopen(u) are generated by the search and are to be expanded or dis-

carded in the future search. Correspondingly, let Fclosed(u), u ∈ V denote a set of

non-dominated labels at vertex u, which have been expanded during the search. Each

label in Fclosed(u), u ∈ V represents a non-dominated path from vo to u. Furthermore,

let F(u), u ∈ V denote the front set at vertex u, which stores non-dominated labels l at205
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Figure 3: Examples of the DC and NSU problems. (a) Visualization of a DC problem that requires checking
if there exists a vector in a set B that weakly dominates the given vector b. In this example, b is non-
dominated by any vectors in B. (b) Visualization of a NSU problem that requires computing ND(B

⋃
{b}).

In this example, (15, 4) is filtered from B since it is weakly dominated by b.

vertex u (i.e., v(l) = u) during the search. As we will see in Sec. 3.3 and 3.4, F(u) is

the same as either Fopen(u) or Fopen(u) ∪ Fclosed(u), depending on the specific instan-

tiation of EMOA*. When presenting the framework EMOA* in Sec. 3, we use F(u) in

order to unify different instantiations under a common framework. Finally, each label

in F(vd) identifies a solution.210

As presented in the ensuing sections, EMOA* requires three procedures as build-

ing blocks: IsDomByFront, IsDomBySol and FilterAndAddFront. These

three procedures encapsulate the computation related to dominance checking, and

the computational efficiency of these procedures affects the overall runtime of the

search [11, 19]. Here, we formally define the problems that need to be solved by215

these three procedures before presenting the algorithms.

Definition 3 (Dominance Checking (DC) Problem) Given a set B of K-dimensional

cost-unique non-dominated vectors (with K ≥ 2) and a new K-dimensional vector b⃗,

the DC problem aims to verify whether there exists a vector b⃗′ ∈ B that weakly domi-

nates b⃗, i.e., b⃗′ ⪯ b⃗.220

Definition 4 (Non-Dominated Set Update (NSU) Problem) Given a set B of K-

dimensional non-dominated vectors (with K ≥ 2) and a new K-dimensional vector b⃗

that is non-dominated by any vector in B, the NSU problem computes ND(B
⋃
{⃗b}).

Examples of the DC and NSU problems are provided in Fig. 3. The relationship

between the aforementioned three procedures and these two problems can be described225

as follows.

• In IsDomByFront, given a label l and F(v(l)), an equivalent DC problem can

be generated with input b⃗ = g⃗(l) and B = {g⃗(l′)|l′ ∈ F(v(l))}.
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Algorithm 1 EMOA* Search Framework

1: lo ← (vo, 0⃗), parent(lo)← NULL
2: Add lo to OPEN
3: F(v)← ∅,∀v ∈ V
4: while OPEN ̸= ∅ do
5: l← OPEN.pop() ▷ Label extracted
6: if CheckUpdateBeforeExp (l) then
7: continue
8: if v(l) = vd then
9: continue

10: for all v′ ∈ GetSuccessors(v(l)) do ▷ Label expanded
11: l′ ← (v′, g⃗(l) + c⃗(v, v′)), parent(l′)← l

12: f⃗(l′)← g⃗(l′) + h⃗(v(l′))
13: if CheckUpdateAfterGen (l) then
14: continue
15: Add l′ to OPEN
16: return F(vd)

• In IsDomBySol, given a label l and F(v(l)), an equivalent DC problem can

be generated with b⃗ = f⃗(l) and B = {f⃗(l′)|l′ ∈ F(vd)}. Note that f⃗(l′) =230

g⃗(l′),∀l′ ∈ F(vd).

• In FilterAndAddFront, given a label l and F(v(l)), an equivalent NSU

problem can be generated with b⃗ = g⃗(l) and B = {g⃗(l′)|l′ ∈ F(v(l))}.

3.2. The EMOA* Search Framework

As shown in Alg. 1, to initialize the search (Lines 1-3), EMOA* first creates an235

initial label lo = (vo, 0⃗), and sets its parent pointer to NULL, which means lo has no

parent. EMOA* then adds lo to OPEN for future search. Additionally, we assume that

the entire graph is known and the front set at each vertex is initialized to be an empty

set. In Alg. 1, we say a label is extracted from OPEN, when EMOA* reaches Line 5.

We say a label is expanded, when EMOA* reaches Line 10. During the search, the set240

of expanded labels is always a subset of the extracted labels. Additionally, we say a

new label is generated when EMOA* reaches Line 11.

After the initialization, in each expansion cycle (Lines 4-15), the label with the

lexicographic minimum f⃗ -value is popped from OPEN and is denoted as l in Alg. 1.
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Notation Meaning

G = (V,E) A graph G with vertex set V and edge set E.

lo, l, l
′, l′′ Labels.

g⃗(l), h⃗(v(l)), f⃗(l) The g, h, f -vector related to label l.

F(v),Fopen(v),Fclosed(v) The frontier sets at vertex v ∈ V .

CheckUpdateBeforeExp The check and update procedure before the expansion of a label.

CheckUpdateAfterGen The check and update procedure after the generation of a label.

IsDomBySol Check if a label is dominated by any solution found.

IsDomByFront Check if a label l is dominated by any label in F(v(l)).

FilterAndAddFront Use a label l to filter F(v(l)) and then add l to F(v(l)).

DC The Dominance Check Problem (Def. 3).

NSU The Non-Dominated Set Update Problem (Def. 4).

BBST Balanced Binary Search Tree.

BS Binary Search.

EMOA* A general multi-objective search framework.

EMOA*-Early An instantiation of EMOA* framework with early dominance checking.

EMOA*-Late An instantiation of EMOA* framework with late dominance checking.

EMOA*-Late-LINEAR An algorithm that implements EMOA*-Late using simple approaches to solve the DC and NSU problems.

EMOA*-Late-BBST An algorithm that implements EMOA*-Late using BBST-based approaches to solve the DC and NSU problems.

TOA*-Late-BBST An improved version of EMOA*-Late-BBST when M = 3.

EMOA*-Late-BS An algorithm that implements EMOA*-Late using BS-based approaches to solve the DC and NSU problems.

TOA*-Late-BS An improved version of EMOA*-Late-BS when M = 3.

Table 1: Frequently used notations, procedure names and abbreviations.

EMOA* then conducts procedure CheckUpdateBeforeExp on Line 6, where la-245

bel l is checked for dominance and is used to update F(v) if l is non-dominated.

Specifically, if l is dominated in CheckUpdateBeforeExp, l is discarded and

the current expansion cycle ends, because l cannot lead to a cost-unique Pareto-

optimal solution. Otherwise (i.e., l is non-dominated), l is used to update F(v(l))

in CheckUpdateBeforeExp. We will discuss two different implementations of250

CheckUpdateBeforeExp later, which lead to different search algorithms. After-

wards, label l is verified whether v(l) = vd (Line 8). If v(l) = vd, the current expansion

cycle ends; Otherwise, l is expanded, as explained next.

To expand a label l (i.e., to expand the path represented by label l), for each suc-

cessor vertex v′ of v(l) in G, EMOA* creates a new label l′ = (v′, g⃗(l) + c⃗(v, v′)),255

which represents a new path from vo to v′ via v(l) by extending l (i.e., extending

the path represented by l). The parent pointer parent(l′) is set to l, which helps re-

12



Algorithm 2 EMOA* with Early Dominance Checking (NAMOA*dr)

CheckUpdateAfterGen(l′)
1: if IsDomByFront (l′) or IsDomBySol (l′) then
2: return true ▷ l′ is pruned.
3: L←FilterAndAddFront (l′)
4: RemoveOpen (L)
5: return false ▷ l′ is not pruned.

CheckUpdateBeforeExp(l)
6: if IsDomBySol (l) then
7: remove l from F(v(l))
8: return true ▷ l is pruned.
9: return false ▷ l is not pruned.

construct the path represented by l′ after the search terminates. Then, EMOA* con-

ducts CheckUpdateAfterGen on Line 13, where the newly generated label l′ is

checked for dominance. If l′ is non-dominated, depending on the implementation,260

CheckUpdateAfterGen will either use l′ to update F(v(l′)), or simply do nothing

as discussed later. Finally, if l′ is non-dominated in CheckUpdateAfterGen, l′ is

added to OPEN for future expansion.

In EMOA*, the search terminates when OPEN is empty. At termination, EMOA*

returns F(vd) (Line 17), which is a set of labels where each label represents a solution.265

This set of solutions is a maximal cost-unique Pareto-optimal set. The cost vectors of

these solutions are the Pareto-optimal front.

3.3. EMOA* with Early Dominance Check

The first instantiation of EMOA* is shown in Alg. 2 and is referred to as EMOA*-

Early. The search process of EMOA*-Early is similar to the search process of270

NAMOA* [33] and NAMOA*dr [19]. We discuss the relationship between them at

the end of this section.

In EMOA*-Early, when a new label l′ is generated on Line 11 in Alg. 1,

CheckUpdateAfterGen (Line 1-5 in Alg. 2) first invokes the procedure

IsDomByFront to compare l′ against the existing labels l′′ ∈ F(v(l′)) and check275

if g⃗(l′) is weakly dominated by g⃗(l′′). Similarly, CheckUpdateAfterGen also
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Figure 4: Examples of early and late dominance checking. (a) shows the example and the initial label
in OPEN after initialization. In this example, we assume the heuristics of all vertices are zero vectors
(i.e., f⃗(l) = g⃗(l) for any label l generated during the search). (b) shows that in the first iteration, label
(v = A, f⃗ = (0, 0)) is extracted from OPEN and expanded, which generates two new labels that are added
to OPEN. (c1) and (c2) show that the label (v = B, f⃗ = (1, 3)) is extracted from OPEN for expansion,
and demonstrate the difference between Early Dominance Checking and Late Dominance Checking. In (c1),
since the newly generated label (v = C, f⃗ = (4, 5)) dominates the existing label (v = C, f⃗ = (7, 7)),
Early Dominance Checking removes (v = C, f⃗ = (7, 7)) from OPEN. In (c2), Late Dominance Checking
does not remove (v = C, f⃗ = (7, 7)) from OPEN after the generation of (v = C, f⃗ = (7, 7)), and
(v = C, f⃗ = (7, 7)) will be discarded in a future expansion cycle when (v = C, f⃗ = (7, 7)) is extracted
from OPEN before expansion.

calls the procedure IsDomBySol to compare l′ against the existing solutions repre-

sented by label l′′ ∈ F(vd) to check if f⃗(l′) is weakly dominated by f⃗(l′′). If l′

is dominated in either IsDomByFront or IsDomBySol, l′ should be discarded

and CheckUpdateAfterGen returns true. Otherwise (i.e., l′ is non-dominated),280

CheckUpdateAfterGen first calls the procedure FilterAndAddFront (Line 3

in Alg. 2) to use l′ to filter F(v), where any existing label l′′ ∈ F(v(l′)) are removed

if g⃗(l′) weakly dominates g⃗(l′′), then adds l′ to F(v(l′)), and finally returns false.

In EMOA*-Early, a non-dominated label l′ is added to F(v(l′)) after its gener-

ation. As a result, F(u), u ∈ V contains both labels that are in OPEN and labels285

that have been expanded (i.e., closed). In other words, F(u) = Fopen(u) ∪ Fclosed(u).

Therefore, when an existing label l is removed from F(u) in FilterAndAddFront

on Line 3 in Alg. 2, if l is in OPEN, the search should also remove l from OPEN to

avoid expanding l in the future. This is achieved by RemoveOpen (L) on Line 4 in

Alg. 2, where L denotes the set of labels that are filtered in FilterAndAddFront290

on Line 3.

The existence of RemoveOpen ensures that at any time of the search, for any label

l ∈ OPEN, there does not exist another label l′ ∈ OPEN such that g⃗(l′) weakly domi-

nates g⃗(l) (Fig. 4). Therefore, in each expansion cycle, after a label l is extracted from
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OPEN, CheckUpdateBeforeExp (Lines 6-9 in Alg. 2) does not need to compare l295

against the existing labels in F(v(l)) any more. Instead, CheckUpdateBeforeExp

only need to check if f⃗(l) is weakly dominated by f⃗(ld) for some ld ∈ F(vd), where ld

represents an existing solution and f⃗(ld) = g⃗(ld) since h⃗(vd) = 0. If l, the extracted

label from OPEN in the current expansion cycle, is dominated, then l is removed

from F(v(l)).300

Remark 1 EMOA*-Early has the same search process as NAMOA* [33]. In the lit-

erature, NAMOA* has been expedited in NAMOA*dr by employing a technique called

dimensionality reduction [19], which can be summarized as follows. With (i) a consis-

tent heuristic and (ii) an OPEN priority queue where labels are prioritized in lexico-

graphic order, then, the first component of the cost vectors corresponding to labels that305

are extracted from OPEN are guaranteed to be monotonically non-decreasing. The

set of labels that are expanded at a vertex is a subset of all labels that are extracted

from OPEN. Therefore, the first component of the cost vector of labels that are ex-

panded at a vertex must be non-decreasing during the search and can be ignored for

dominance checking. In other words, given a label l, to check if any existing label310

l′ ∈ Fclosed(v(l)) weakly dominates l, NAMOA*dr only needs to check if the truncated

vectors Trunc(g⃗(l′)) weakly dominates Trunc(g⃗(l)). This idea of truncating vectors

for dominance checking is referred to as the “dimensionality reduction” in [19], which

has been shown to speed up the search.

It is worthwhile to point out that, this dimensionality reduction is only applica-315

ble to the closed set, i.e., Fclosed(u), at a vertex u, and is not applicable to the open

set Fopen(u). The reason is that: the first component of the cost vector of labels l that

are added to Fopen(v(l)) during the search may not be monotonically non-decreasing,

and the first component cannot be ignored for dominance checking. As a result, in

EMOA*-Early, to employ the dimensionality reduction technique, the algorithm has to320

separateF(u) at a vertex u ∈ V intoFclosed(u) andFopen(u) so that the dimensionality

reduction can be applied to Fclosed(u).

In the next section, we present EMOA*-Late, the second implementation of

EMOA*, which defers the dominance checking of a newly generated label l related
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Algorithm 3 EMOA* with Late Dominance Checking (BOA*)

CheckUpdateAfterGen(l′)
1: if IsDomByFront (l′) or IsDomBySol (l′) then
2: return true ▷ l′ is pruned.
3: return false ▷ l′ is not pruned.

CheckUpdateBeforeExp(l)
4: if IsDomByFront (l) or IsDomBySol (l) then
5: return true ▷ l is pruned.
6: FilterAndAddFront (l)
7: return false ▷ l is not pruned.

to Fopen(v(l)) until l is about to be expanded, and is able to apply the dimensionality325

reduction technique to all dominance checking operations.

3.4. EMOA* with Late Dominance Check

The second instantiation of EMOA* is shown in Alg. 3 and we refer to it as

EMOA*-Late. EMOA*-Late is similar to BOA* [11] and their relationship is dis-

cussed at the end of this section.330

In EMOA*-Late, when a new label l′ is generated on Line 11 in

Alg. 1, CheckUpdateAfterGen (i.e., Line 1-3 in Alg. 3) first invokes both

IsDomByFront and IsDomBySol to check if l′ is dominated. If l′ is dom-

inated in either IsDomByFront or IsDomBySol, l′ should be discarded and

CheckUpdateAfterGen returns true. Otherwise, l′ is non-dominated. In this case,335

EMOA*-Late directly adds l′ to OPEN for future expansion, without invoking the pro-

cedure FilterAndAddFront in comparison to EMOA*-Early.

When a label l is extracted from OPEN, both IsDomByFront and IsDomBySol

are called by CheckUpdateAfterGen on Line 4 to check if l is dominated. If l is

dominated, l is simply discarded and the current expansion cycle ends. Otherwise, l is340

used to filter F(v(l)) at first and then added to F(v(l)).

In EMOA*-Late, F(u), u ∈ V only contains labels that are extracted from

OPEN and never contains labels that are generated and in OPEN. In other words,

F(u) = Fclosed(u) during the search in EMOA*-Late. As a result, EMOA*-Late

avoids the operations on Line 4 in Alg. 2 in EMOA*-Early; and EMOA*-Late defers345
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the operations on Line 3 in Alg. 2 in EMOA*-Early until a label is extracted from

OPEN before being expanded (Fig. 4). In practice, Fopen(u), u ∈ V is often a large set,

and it can be computationally expensive to run dominance checking against Fopen(u)

every time a new label is generated. As shown in BOA* [11], this modification of

the search also allows BOA* to implement the IsDomByFront, IsDomBySol and350

FilterAndAddFront procedures as a constant-time operation in the presence of

two objectives.

Remark 2 EMOA*-Late is similar to BOA* [11] with the only differ-

ence that EMOA*-Late introduces the IsDomByFront, IsDomBySol and

FilterAndAddFront procedures to encapsulate some common operations on355

F(v), v ∈ V that are related to dominance checking. Within the EMOA*-Late

framework, BOA* can be regarded as an instantiation of the framework when there

are two objectives.

We briefly summarize BOA* as follows. BOA* leverages the aforementioned di-

mensionality reduction in NAMOA*dr. Since there are two objectives only, after the360

dimensionality reduction, the cost vector of a label becomes a scalar value. Corre-

spondingly, to represent F(v), v ∈ V , BOA* only needs to store the minimum scalar

value (denoted as gmin
2 (v)) among labels that are expanded at v during the search.

As a result, IsDomByFront, IsDomBySol for a label l can be implemented by

comparing the second component of g⃗(l), i.e., g2(l), against gmin
2 (v(l)), which is a365

constant-time operation, and FilterAndAddFront can be implemented by updat-

ing gmin
2 (v(l)) with g2(l) when g2(l) < gmin

2 (v(l)) , which is also a constant-time

operation.

It has been shown that when there are two objectives (M = 2), BOA* runs faster

than NAMOA*dr in general due to the late dominance check and the resulting constant370

dominance checking operations [11].

3.5. Solving the Check and Update Problems

Solving DC and NSU problems with different approaches within the EMOA*

framework lead to different algorithms. As an example, a simple approach that solves
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the DC problem iterates each vector b⃗′ ∈ B and check if b⃗′ ⪯ b⃗, which has a run-375

time complexity of O(|B| · K). A simple method that solves the NSU problem

takes two steps: (i) filter B by removing from B all vectors that are weakly dom-

inated by b⃗, and (ii) add b⃗ into B. Here, a simple method for step (i) needs to it-

erate the vectors in B in order to remove all dominated vectors and has a runtime

complexity of O(|B| · K), and step (ii) takes constant time. Consequently, the over-380

all runtime complexity is O(|B| · K). With these simple approaches to solve the

DC and NSU problems, for either EMOA*-Early or EMOA*-Late, a corresponding

search algorithm is determined. For EMOA*-Late, we call the corresponding algo-

rithm EMOA*-Late-LINEAR, where LINEAR means the algorithm uses a linear scan

of vectors in B for dominance checking. For EMOA*-Early, the resulting algorithm is385

NAMOA* [33], which does not use the dimensionality reduction technique in compar-

ison to NAMOA*dr.

Remark 3 We are now ready to revisit the aforementioned Kung’s method [20] and

discuss its relationship to this article. Kung’s method aims to solve the following prob-

lem (hereafter referred to as Kung’s problem for simplicity). Given an arbitrary set B390

of K-dimensional vectors (K ≥ 2), Kung’s problem seeks to compute ND(B). We

refer the reader to [20] for more detail about Kung’s method and the runtime com-

plexity. The DC and NSU problems can be regarded as incremental versions of Kung’s

problem: specifically, after a new vector b⃗ is generated, b⃗ is checked for dominance

against the existing vectors in B, which is a DC problem; then, if b⃗ is non-dominated,395

B is updated as ND(B
⋃
{⃗b}), which is a NSU problem. This incremental formula-

tion of Kung’s problem is important to EMOA*, since F(v) at each vertex v ∈ V is

constructed in an incremental manner during the search.

3.6. Theoretical Properties of EMOA*

EMOA*-Early has the same search process as NAMOA* [33] (and400

NAMOA*dr [19]). As a result, EMOA*-Early has the same properties as

NAMOA* as long as the three procedures IsDomByFront, IsDomBySol and

FilterAndAddFront are correctly implemented to solve the corresponding DC
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and NSU problems. The analysis of EMOA*-Early is thus omitted. We hereafter

analyze only the properties of EMOA*-Late.405

A MO-SPP instance is feasible if there is at least one solution, and other-

wise (i.e., there is no path from vo to vd in G), the instance is infeasible. With

an implementation of the three procedures IsDomByFront, IsDomBySol and

FilterAndAddFront that correctly solve the corresponding DC and NSU prob-

lems, it is guaranteed that EMOA*-Late terminates in finite time for both feasible410

and infeasible instances (Theorem 1). EMOA*-Late computes a maximal cost-unique

Pareto-optimal set at termination for feasible instances (Theorem 2).

We say a path π = (v1, v2, · · · , vk) forms a loop at vk, if vk is the first vertex in π

such that vk = vp for some p = 1, 2, · · · , k − 1.

Lemma 1 EMOA*-Late never adds a label l to OPEN if l represents a path that forms415

a loop at v(l).

Proof 1 We only need to consider the case where l is generated (Line 11) and before

being added to OPEN (Line 15). (If l is not generated, l cannot be added to OPEN.)

Let l denote a label representing a path π that forms a loop at v(l), and let l′ denote

the label representing the corresponding path with the loop in π removed. Since l420

represents a path that forms a loop at v(l), by definition, we know that v(l) = v(l′). The

cost vector of edges in G are non-negative, and π has an additional loop in comparison

with π′, therefore, g⃗(l) is weakly dominated by g⃗(l′). Furthermore, when l is generated,

all of its parent labels from l to lo must have been expanded. Therefore, l′ must have

been expanded and must have been added to F(v(l′)). As a result, l is discarded at425

Line 13 since v(l) = v(l′) and g⃗(l′) ⪯ g⃗(l). EMOA*-Late thus never adds l to OPEN.

Theorem 1 EMOA*-Late terminates in finite time for both feasible and infeasible in-

stances.

Proof 2 Since G is finite, there is a finite number |Π| of paths without loops from vo

to any other vertex v ∈ V in G. Based on Lemma 1, we know that, the maximum430
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possible number of labels in OPEN is no larger than |Π| during the search. EMOA*-

Late eventually extracts all labels from OPEN and therefore terminates in finite time.

The proof holds for both feasible and infeasible instances.

Theorem 2 EMOA*-Late computes a maximal cost-unique Pareto-optimal set at ter-

mination for feasible instances.435

Proof 3 In each expansion cycle (Lines 4-15 in Alg. 1), EMOA*-Late extracts a label l

from OPEN, whose f⃗ -vector is the lexicographic minimum in OPEN. It means none of

the remaining labels in OPEN can dominate l. With procedures IsDomByFront and

IsDomBySol: label l is discarded if and only if it is weakly dominated by some other

expanded labels. This implies that it can not lead to a cost-unique Pareto-optimal so-440

lution. If label l is not discarded, it is then added to F(v(l)) after filtering F(v(l))

using l, which ensures that F(v(l)) contains only cost-unique non-dominated labels

after the filtering. When Alg. 1 terminates, each of the labels in F(vd) must represent

a cost-unique Pareto-optimal solution. Finally, when a label l is expanded, all possi-

ble successor labels of l are generated and the non-dominated ones are inserted into445

OPEN for future expansion. The algorithm terminates only when all labels are either

expanded or discarded, which guarantees that a maximal set of cost-unique Pareto-

optimal solutions are found.

From now on, we focus on how to correctly implement the three procedures while

achieving high computational efficiency. We begin with a BBST-based approach in450

Sec. 4 and a BS-based approach in Sec. 5. Both approaches leverage the dimensionality

reduction technique and thus require consistent heuristics.

4. The EMOA*-Late-BBST Algorithm

This section presents an algorithm that implements the EMOA*-Late by leveraging

balanced binary search trees (BBSTs). We review BBSTs in Sec. 4.1 and then elab-455

orate the BBST-based approaches that solve the DC and NSU problems in Sec. 4.2

and Sec. 4.3 respectively. We finally describe the EMOA*-Late-BBST algorithm in

Sec. 4.4.
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4.1. Balanced Binary Search Trees (BBSTs)

Let n denote a node within a binary search tree (BST) with the following attributes:460

• n.key is the key of n, which is a K-dimensional vector. To compare two nodes,

their keys are compared using the lexicographic order.

• n.height is the height of n, which is the number of edges along the longest

downwards path between n and a leaf node. A leaf node has a height of zero.

The height of the root node is also called the height of the BST.465

• n.left and n.right are the left child and the right child of n representing the left

sub-tree and the right sub-tree, respectively.

• We say that n = NULL if n does not exist in the BST. For example, if n is a

leaf node, then n.left = NULL and n.right = NULL.

We limit our focus to the AVL-tree, a popular balanced BST data structure. For any470

node n in an AVL-tree, let d(n) := n.left.height− n.right.height denote the differ-

ence between the height of the left and right children. The AVL-tree is called balanced

if d(n) ∈ {−1, 0, 1}. To maintain balance at insertion or deletion of nodes, an AVL-

tree invokes the so-called rotation operations when |d(n)| ≥ 2 in order to re-balance

the tree. Consequently, given an AVL-tree of size N (i.e., containing N nodes), the475

height of the root node is bounded by O(logN).

4.2. BBST-Based Checking Method

Given a set B of cost-unique non-dominated vectors, let TB denote an AVL-tree

that stores all vectors in B as the keys of tree nodes. Given a new vector b⃗, the DC

problem can be solved via Alg. 4, which traverses the tree recursively while running480

dominance checking.

Alg. 4 is invoked with BBST-Check (TB .root, b⃗), where TB .root is the root node

of the tree and b⃗ is an input vector to be checked for dominance. As the base case

(Line 1), if the input node n is NULL, the algorithm terminates and returns false,

which means b⃗ is non-dominated. When the input node is not NULL, b⃗ is checked485
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Algorithm 4 BBST-Check (n, b⃗)

INPUT: n is a node in an AVL-tree and b⃗ is a vector
1: if n = NULL then
2: return false
3: if n.key ⪯ b⃗ then
4: return true
5: if b⃗ <lex n.key then
6: return BBST-Check (n.left, b⃗)
7: else ▷ i.e., b⃗ >lex n.key
8: if BBST-Check (n.left, b⃗) then ▷ Removed in TOA*-Late-BBST
9: return true

10: return BBST-Check (n.right, b⃗)

for dominance against n.key and returns true if n.key ⪯ b⃗. Otherwise, the algorithm

verifies if b⃗ is lexicographically smaller than n.key.

Case 1 If b⃗ <lex n.key, there is no need to traverse the right sub-tree of n, since any node

in the right sub-tree of n must be lexicographically larger than n and thus cannot

weakly dominate b. The algorithm then recursively invokes itself to traverse only490

the left sub-tree for dominance checking.

Case 2 Otherwise (i.e., b⃗ >lex n.key), the algorithm first invokes itself to traverse the

left sub-tree (Line 8) and then the right sub-tree (Line 10) for dominance check-

ing. Note that, in this case, both child nodes need recursive traversal to ensure

correctness.495

4.3. BBST-Based Update Method

Similarly, given a set of non-dominated vectors B that is stored as a BBST TB
and a non-dominated vector b⃗, the NSU problem can be solved by (i) invoking Alg. 5

to remove nodes from the tree TB whose keys are dominated by b⃗ and (ii) inserting

the input (non-dominated) vector b⃗ into the tree. Here, step (ii) is a regular AVL-tree500

insertion operation, which takes O(log |B|) time, and we will focus on step (i) in the

ensuing paragraphs.

For step (i), Alg. 5 is invoked with BBST-Filter (TB .root, b⃗), where TB .root

is the root node of the tree. As shown in Alg. 5, as the base case (Line 1), if the input
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Algorithm 5 BBST-Filter (n, b⃗)

INPUT: n is a node in an AVL-tree and b⃗ is a vector
1: if n = NULL then
2: return NULL
3: if b⃗ >lex n.key then
4: n.right←BBST-Filter (n.right, b⃗)
5: else
6: n.left←BBST-Filter (n.left, b⃗)
7: n.right←BBST-Filter (n.right, b⃗)
8: if b⃗ ⪯ n.key then
9: return AVL-Delete(n)

Note: the tree needs to be re-balanced after the entire filtering process.

node is NULL, the algorithm terminates and returns NULL. When the input node n505

is not NULL, the algorithm verifies whether b⃗ >lex n.key.

Case 1 If b⃗ >lex n.key, there is no need to filter the left sub-tree of n, since any node

in the left sub-tree of n must be non-dominated by b⃗. The algorithm recursively

invokes itself to only traverse the right sub-tree for filtering.

Case 2 Otherwise (i.e., b⃗ <lex n.key)4, the algorithm first invokes itself to traverse the510

left sub-tree (Line 6) and then the right sub-tree (Line 7) for filtering. Note that,

in this case, both child nodes need to be traversed for further dominance checking

to ensure correctness.

At the end (Line 8), n.key is checked for dominance against b⃗. If n.key is dominated, n

is removed from the tree. After invoking Alg. 5, if nodes are deleted, the tree needs515

to be re-balanced. Specifically, the tree can become unbalanced after running Alg. 5

where the height difference between the left sub-tree and right sub-tree of a node n can

be greater than 2, i.e., |d(n)| ≥ 2. In this case, a single rotation operation related to n

cannot re-balance the tree, and one possible implementation to re-balance the tree is

to first mark the node to be deleted during the filtering process as described in Alg. 5,520

and then conduct an in-order traversal of the tree, while skipping the marked nodes,

4Note that it’s impossible to have b⃗ = n.key: Within EMOA* (Alg. 1), FilterAndAddFront is
always invoked after IsDomByFront. If we have that b⃗ = n.key, the IsDomByFront removes it and
FilterAndAddFront will not be invoked (Line 6-8 in Alg. 1).
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to rebuild an AVL-tree. This implementation takes O(|B| · K) time with respect to

the size of the tree. For the filtering part (Alg. 5), in the worst case, the entire tree is

traversed and all nodes in the tree are to be deleted (from the leave nodes to the root

node), which takes O(|B| ·K) time.525

Theoretically, both Alg. 4 and 5 run in O(|B| · K) time in the worst case, which

is the same as the aforementioned linear approaches (i.e., iterates the vectors in B) in

Sec. 3.5. However, as shown in our experimental results in Sec. 6, the BBST-based

methods can solve the DC and NSU problems more efficiently in practice. The in-

tuitive reason behind such efficiency is that, the AVL-tree is organized based on the530

lexicographic order, which can provide guidance when traversing the tree for domi-

nance checking. As a result, only a small portion of the tree is traversed. Finally, note

that the method in this section does not put any restriction on K.

4.4. EMOA* with BBST-Based Checking and Update

This section elaborates how the aforementioned BBST-based algorithms (Alg. 4535

and 5) are used within the EMOA* framework (Alg. 1). We refer to the resulting

algorithm as EMOA*-Late-BBST. EMOA*-Late-BBST leverages the idea of dimen-

sionality reduction as in NAMOA*-dr, which can expedite the BBST-based checking

and update by reducing the length of the cost vectors by one.

Specifically, when the heuristic is consistent, and all labels are extracted from540

OPEN based on the lexicographic order of their f⃗ -vectors from the minimum to

the maximum, the sequence of labels being extracted at the same vertex has non-

decreasing f1 values, where f1 represents the first component of the f⃗ -vector of a label.

Additionally, since all labels at the same vertex v have the same h⃗-vector, the sequence

of labels being extracted at the same vertex also has non-decreasing g1 values, where g1545

represents the first component of the g⃗-vector of a label. During the search of EMOA*-

Late-BBST, when a new label l is generated, IsDomByFront only needs to perform

dominance checking between Trunc(g⃗(l)) and Trunc(g⃗(l′)),∀l′ ∈ F(v(l)), instead of

comparing g⃗(l) with g⃗(l′),∀l′ ∈ F(v(l)). Consequently, in EMOA*-Late-BBST, for

each vertex v ∈ V , a BBST tree TB is constructed with B = ND({Trunc(g⃗(l′)),∀l′ ∈550

F(v)}) as aforementioned. In other words, the key of nodes in TB forms a maximal
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Figure 5: (a) A visualization of F(v) at some vertex v in the graph G during the EMOA* search. Here, there
are five labels in F(v). The underlined three numbers of each g⃗-vector indicate the corresponding truncated
vector Trunc(g⃗) (as defined in Sec. 4.4). (b) The corresponding balanced binary search tree. The keys of
the nodes in this tree form the non-dominated subset of the truncated vectors. The dashed blue arrows show
the sequence of tree nodes that are traversed when running the IsDomByFront procedure (Alg. 4). The
truncated vector (9, 9, 7) in the tree weakly dominates the input vector (9, 9, 9), which indicates that the
new label l (in blue) with g⃗-vector (13, 9, 9, 9) is weakly dominated and should be discarded.

cost-unique non-dominated subset of the truncated cost vector of labels in F(v).

To run IsDomByFront for a label l that is extracted from OPEN (Line 6 in

Alg. 1), BBST-Check (n, b⃗) in Alg. 4 is invoked with b⃗ = Trunc(g⃗(l)) and n be-

ing the root node of the tree TB . We provide a toy example for IsDomByFront555

in Fig. 5. Similarly, for IsDomBySol (Line 6 in Alg. 1), BBST-Check (n, b⃗) in

Alg. 4 is invoked with b⃗ = Trunc(f⃗(l)) and n being the root node of the tree TB′

with B′ = ND({Trunc(g⃗(l′)),∀l′ ∈ F(vd)}) (i.e., the set of all non-dominated trun-

cated vectors of labels in the front set at the destination node). During the search,

when a label l is extracted from OPEN and is used to update the front set in the pro-560

cedure FilterAndAddFront (Line 8 in Alg. 1), BBST-Filter (n, b⃗) in Alg. 5

is first invoked with b⃗ = Trunc(g⃗(l)) and n being the root node of the tree TB where

B = ND({Trunc(g⃗(l′)),∀l′ ∈ F(v(l))}). Then, b⃗ = Trunc(g⃗(l)) is added to TB .

In summary, in EMOA*-Late-BBST, procedures IsDomByFront,

IsDomBySol and FilterAndAddFront only need to operate on the trun-565

cated vectors of labels, instead of the original vectors.

4.5. Discussion—EMOA*-Late-BBST as a generalization of BOA*

EMOA*-Late-BBST generalizes BOA* in the following sense. When M = 2, for

any cost vector g⃗ of a label, the truncated vector Trunc(g⃗) is of length one and is thus

a scalar value. In this case, the AVL-tree corresponding to F(v) of any vertex v ∈ V in570

EMOA*-Late-BBST becomes a singleton tree: a tree with a single root node TB .root.
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The key value of TB .root is the minimum value of g2(l) among all labels l ∈ F(v),

which is the same as the auxiliary variable gmin
2 introduced at each vertex in BOA*.

Solving a DC problem requires only a scalar comparison between TB .root.key and the

scalar Trunc(g⃗), i.e., the truncated cost vector of the label selected from OPEN in each575

search iteration. Clearly, this scalar comparison takes constant time. Additionally, the

FilterAndAddFront in EMOA*-Late-BBST requires simply assigning the scalar

Trunc(g⃗) to TB .root.key (i.e., gmin
2 ), which also takes constant time. Therefore, BOA*

is a special case of EMOA* when M = 2.

4.6. BBST-Based Tri-Objective A* (TOA*-Late-BBST)580

When M = 3, Alg. 4 can be further improved to achieve better theoretic run-

time complexity, which then further expedites EMOA*-Late-BBST. We name this

improved algorithm TOA*-Late-BBST (Tri-Objective A*), which differs from the

EMOA*-Late-BBST by removing Lines 8-9 in Alg. 4. In other words, when M = 3,

each truncated vector b⃗ as well as the key of all nodes in the tree TB have length585

(M − 1) = 2. In this case, in Alg. 4, when b⃗ >lex n.key (i.e., Line 8 in Alg. 4), there

is no need to further traverse the left sub-tree. This property can be formally stated via

the following theorem.

Theorem 3 Given a two-dimensional vector b⃗, and an arbitrary node n in TB with B

denoting a set of cost-unique non-dominated two-dimensional vectors, if (i) n.key nei-590

ther dominates nor is equal to b⃗ and (ii) b⃗ >lex n.key, then the key of any nodes in the

left sub-tree of n cannot dominate b⃗.

Proof 4 Recall that we use subscripts to denote the specific component of a vector.

From (i) and (ii), we know that b1 > n.key1 and b2 < n.key2. For any node n′ in the

left sub-tree of n, by construction of the tree, n′ <lex n and thus n′.key1 ≤ n.key1.

Additionally, by definition, the key of every pair of nodes in TB are non-dominated and

non-equal to each other, thus n′.key2 > n.key2. Combining these together, we know

that

b2 < n.key2 < n′.key2.
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BOA* TOA*-Late-BBST EMOA*-Late-BBST
M = 2 = 3 ≥ 2

Dominance Checking Problem O(1) O(log |B|) O(|B| · (M − 1))

Non-Dominated Set Update Problem O(1) O(|B|) O(|B| · (M − 1))

Table 2: Runtime complexity of related methods as a function of the dimension M , and the size B of the
AVL tree. Note that BOA* is a special case of EMOA* when M = 2, and TOA*-Late-BBST is an improved
version of EMOA*-Late-BBST when M = 3.

Thus, b⃗ is not dominated by n′.key. Since n′ can be any node in the left sub-tree of n,

the theorem is hence proved.

In TOA*-Late-BBST, the modified version of Alg. 4 traverses the AVL tree either595

to the left sub-tree (when b⃗ <lex n.key) or to the right sub-tree (when b⃗ >lex n.key),

which leads to a runtime complexity of O(log |B|) (note that K = M−1 = 2 is a con-

stant number and is thus omitted from O(log |B| ·K)). We say that TOA*-Late-BBST

is an improved version of EMOA*-Late-BBST when M = 3 because the theoretic

runtime complexity is reduced from O(|B|) to O(log |B|). Finally, we summarize the600

runtime complexity of solving DC and NSU problems in both the existing BOA* [11]

and our algorithms (TOA*-Late-BBST and EMOA*-Late-BBST) in Table 2.

5. The EMOA*-Late-BS Algorithm

This section provides a different implementation of the three procedures in

EMOA*-Late by (i) using a lexicographically sorted list to represent F(v) at a ver-605

tex v ∈ V , instead of using a BBST as in the previous section, and (ii) using a binary

search to conduct fast dominance checking. We begin with the general case, i.e., an

arbitrary number of objectives, in Sec. 5.1, and name this new approach as EMOA*-

Late-BS, where BS stands for Binary Search. We then present the approach when

there are three objectives in Sec. 5.2, and we refer to this approach as TOA*-Late-BS.610

TOA*-Late-BS (and EMOA*-Late-BS) have the same worst-case runtime complexity

as TOA*-Late-BBST (and EMOA*-Late-BBST) as shown in Table 2. However, this

BS-based approach can still be regarded as an improved version of the BBST-based

approach since rotation operations that are required to maintain BBSTs are saved.
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Algorithm 6 BS-Check (B, b⃗)

INPUT: B is a lexicographically sorted list of vectors; b⃗ is a vector to be checked
for dominance.

1: run BinarySearch to find b⃗max, the lexicographically largest vector in B that is
no larger than b⃗; let B′ denote the list of vectors from the beginning of B till b⃗max.

2: if b⃗max does not exist then
3: return false ▷ b⃗ is non-dominated.
4: for all b⃗′ ∈ B′ do
5: if b⃗′ ⪯ b⃗ then
6: return true ▷ b⃗ is dominated.
7: return false ▷ b⃗ is non-dominated.

5.1. EMOA*-Late-BS615

EMOA*-Late-BS also leverages the dimensionality reduction technique. Here,

for every v ∈ V , F(v) stores the truncated vectors, which are of length M − 1.

EMOA*-Late-BS represents the F(v) at each vertex v ∈ V as a lexicographically

sorted list B from the minimum to the maximum5, and runs a binary search over B

to realize IsDomByFront which checks if an input vector b is weakly dominated620

by any existing vector in B. We show this BS-based checking procedure in Alg. 6.

Specifically, Alg. 6 first uses BinarySearch (Line 1) to find the lexicographically

largest vector b⃗max in B that is lexicographically no larger than b⃗, which has a runtime

complexity of O(log(|B|)) in the worst case. Note that any vector in B that is lexi-

cographically larger than b⃗max is also lexicographically larger than b⃗ and thus cannot625

dominate b⃗. Let B′ denote the list of vectors from the beginning of B till b⃗max. Alg. 6

iterates B′ to check if any existing vector in B′ weakly dominates the given b⃗. As an

edge case, if no such a b⃗max is found during BinarySearch (Line 2), all vectors

in B are lexicographically larger than b⃗ and no vector in B can dominate b⃗. In the

worst case, B′ = B and the iteration of B′ has a runtime complexity of O(|B|). As630

a result, the entire Alg. 6 has a worst-case runtime complexity of O(|B|). Finally, to

realize IsDomBySol, EMOA*-Late-BS compares the given vector b⃗ against the vec-

tors in Bvd , where Bvd is a set of cost-unique non-dominated truncated cost vectors

5Strictly speaking, each vertex v is associated with its own lexicographically sorted list B, thus we should
write B(v). However, to simplify notation, we omit v.
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Algorithm 7 BS-Filter (B, b⃗)

INPUT: B is a lexicographically sorted list of vectors and b⃗ is a vector used to filter
B.

1: run BinarySearch to find b⃗max, the lexicographically largest vector in B that
is no larger than b⃗; let B′ denote the list of vectors starting after b⃗max till the end
of B.

2: if b⃗max does not exist then
3: B′ ← B.
4: for all b⃗′ ∈ B′ do
5: if b⃗ ⪯ b⃗′ then
6: remove b⃗′ from B.
7: return B.

corresponding to labels in F(vd), with the exactly same algorithm shown in Alg. 6.

We have presented how to implement IsDomByFront and IsDomBySol, and635

we now present the implementation of FilterAndAddFront (Line 8 in Alg. 1) us-

ing binary search. To update B with a new non-dominated vector b⃗, EMOA*-Late-BS

begins by filtering B and then adds b⃗ into B to compute ND(B
⋃
{⃗b}). We elaborate

the filtering procedure in Alg. 7. To filter B with b⃗, Alg. 7 first runs BinarySearch

over B to find the lexicographically largest vector b⃗max that is lexicographically no640

larger than b⃗ (Line 1). In B, any vector that is lexicographically smaller than b⃗max

cannot be dominated by b⃗. Let B′ denote the list of vectors starting after b⃗max till the

end of B. Alg. 7 then iterates B′ (Line 4) and removes any existing vector in B′ that

is dominated by b⃗. As a special case, if b⃗max does not exist, Alg. 7 iterates the entire B

(Line 3).645

After running Alg. 7 to filter B (which takes O(|B|) time), the vector b⃗ is added

to B at the position immediately after b⃗max in B so that B is still lexicographically

sorted after the insertion. For the special case where b⃗max does not exist, i.e., no

vector in B is lexicographically smaller than b⃗, b⃗ is added to the beginning of B,

since b is the lexicographically minimum vector in B. Overall, this implementation650

of FilterAndAddFront has a worst-case runtime complexity of O(|B|).

Intuitively, both the BS-based approach in this section and the BBST-based ap-

proach in the previous section hinge on running a binary search for fast dominance

checking. However, the BBST-based approach relies on a binary tree, which requires
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Algorithm 8 BS-Check-TOA∗ (B, b⃗)

INPUT: B is a lexicographically sorted list of two-dimensional vectors and b⃗ is
two-dimensional vector to be checked for dominance.

1: run BinarySearch to find b⃗max, the largest vector in B that is no larger than b⃗.
2: if b⃗max does not exist then
3: return false
4: if bmax

2 ≤ b2 then
5: return true
6: else
7: return false

rotation operations to re-balance the trees when vectors are added or deleted, while the655

BS-based approach directly operates on a lexicographically sorted list and can bypass

the rotation operations needed by the BBST.

5.2. TOA*-Late-BS

When there are only three objectives (M = 3), the BS-based checking procedure in

EMOA*-Late-BS can be further improved, which leads to the algorithm TOA*-Late-660

BS that is outlined in Alg. 8. Specifically, Alg. 8 first runs a binary search (Line 1) to

find the lexicographically largest vector b⃗max in B that is lexicographically no larger

than b⃗, which takes log(|B|) time in the worst case. This vector b⃗max has the property

that bmax
1 ≤ b1, since b⃗max is lexicographically no larger than b⃗. To check if b⃗ is

dominated or not, we now only need to check if bmax
2 ≤ b2 (this will be explained665

in the next paragraph). If so (Line 4), b⃗ is weakly dominated by b⃗max and should be

discarded; otherwise (Line 6), b⃗ is non-dominated by any existing vector in B. As an

edge case (Line 2), if no such a b⃗max is found during the binary search (e.g., when |B|

is empty), then it indicates there does not exist a vector in B that weakly dominates b⃗.

Finally, for IsDomBySol, TOA*-Late-BS compares the given vector b⃗ against the670

vectors in Bvd
, a maximal set of cost-unique non-dominated truncated cost vectors

corresponding to labels in F(vd), with the same algorithm outlined in Alg. 8.

To argue that Alg. 8 is correct, note that every lexicographically sorted list B

stores truncated vectors, each of which is of length two. Since the vectors in B

are lexicographically sorted, all first components of the vectors in B are monotoni-675

cally non-decreasing while all second components of the vectors must be monotoni-
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cally non-increasing. Then, (i) among vectors that are lexicographically larger than b⃗,

none of them can dominate b⃗; (ii) among vectors that are lexicographically no larger

than b⃗, b⃗max has the smallest second component, and if bmax
2 is larger than b2, b⃗ cannot

be weakly dominated by any existing vector in B. Alg. 8 has a runtime complexity680

of O(log |B|) in the worst case.

Finally, the FilterAndAddFront procedure in TOA*-Late-BS is same as the

one in EMOA*-Late-BS as aforementioned.

Remark 4 The aforementioned EMOA*-Late-BBST and EMOA*-Late-BS algo-

rithms are two instantiations of EMOA*-Late, and this section presents the instan-685

tiation of EMOA*-Early. The BBST-based and BS-based approaches in Sec. 4 and

Sec. 5 can be applied to EMOA*-Early to expedite the dominance checking opera-

tions. We refer to the resulting algorithms as EMOA*-Early-BBST (M > 3), TOA*-

Early-BBST (M = 3), EMOA*-Early-BS (M > 3), and TOA*-Early-BS (M = 3)

respectively.690

Specifically, as discussed in Sec. 3.3, in EMOA*-Early, F(v) = Fopen(v) ∪

Fclosed(v), v ∈ V , and the dimensionality reduction technique can only be applied

to Fclosed(v) and is not applicable to the open set Fopen(u). It is because that the first

component of the cost vector of labels l that are added to Fopen(v(l)) during the search

may not be monotonically non-decreasing, and the first component cannot be ignored695

for dominance checking. We therefore choose to apply the BBST-based or BS-based

approaches to Fclosed(v) in these four EMOA*-Early algorithms. In other words, to

check if a label l is dominated by any existing labels inF(v(l)), we use the BBST-based

or BS-based approaches to check l for dominance against Fclosed(v(l)), and then we

use a linear scan over Fopen(v(l)) to check if l is dominated. Note that all these four700

EMOA*-Early algorithms are similar to NAMOA*dr with the only difference that the

dominance checking related toFclosed(v), v ∈ V now uses the BBST-based or BS-based

approaches, as opposed to a linear scan over Fclosed(v) as in NAMOA*dr.
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6. Experimental Results

The main goal of the experimental section is to show the generality and705

versatility of our framework by implementing different data structure and algo-

rithms. We implement the three procedures IsDomByFront, IsDomBySol and

FilterAndAddFront within the EMOA* framework (both EMOA*-Late and

EMOA*-Early) using different data structures and approaches, and compare the re-

sulting algorithms against the baseline algorithm NAMOA*dr [19], a state-of-the-art710

algorithm that can handle an arbitrary number of objectives. All implementations (in-

cluding the NAMOA*dr baseline) are in the C programming language and use a stan-

dard binary heap to implement OPEN.6

• Our first implementation of EMOA* is EMOA*-Late-LINEAR, which uses

a linked list to represent the front set at each vertex, and as mentioned715

in Sec. 3.5, the three key procedures IsDomByFront, IsDomBySol and

FilterAndAddFront are implemented by running a for-loop over the front

set. We refer to this implementation as TOA*-Late-LL (when M = 3) and

EMOA*-Late-LL (M > 3) where ‘LL’ stands for linked list.

• Our second implementation of EMOA* uses a an array (and not a linked list as in720

TOA*-Late-LL and EMOA*-Late-LL) to represent the front set at each vertex.

We refer to this implementation as TOA*-Late-AR (when M = 3) and EMOA*-

Late-AR (M > 3) where ‘AR’ stands for array.

• The third implementation of EMOA* uses a balanced binary search tree as pre-

sented in Sec. 4, where the balanced binary search trees are implemented as725

AVL-trees using linked lists (i.e., each tree node has two pointers that points to

the left and the right child nodes). We refer to this implementation as TOA*-

Late-BBST (M = 3) and EMOA*-Late-BBST (M > 3) where ‘BBST’ stands

for balanced binary search tree.

• The fourth implementation of EMOA* is the binary search-based approach as730

6Our implementation is at https://github.com/carlos-hu70/moaframework
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presented in Sec. 5, where the underlying implementation of each front set is an

array, so that the indices of the elements in the array can be used to conduct the

binary search. We refer to this implementation as TOA*-Late-BS (M = 3) and

EMOA*-Late-BS (M > 3) where ‘BS’ stands for binary search.

• The aforementioned four implementations are all based on EMOA*-Late. We735

also implement the four algorithms mentioned in Sec. 3.3: EMOA*-Early-BBST

(M > 3), TOA*-Early-BBST (M = 3), EMOA*-Early-BS (M > 3), and

TOA*-Early-BS (M = 3).

• Finally, as a baseline we use NAMOA*dr [33]. Here, the front sets (both Fopen

and Fclosed) at each vertex are implemented by using either a linked list (denoted740

as NAMOA*dr-LL) or an array (denoted as NAMOA*dr-AR). The original pa-

per [33] implemented NAMOA*dr in Lisp and represented the Fopen and Fclosed

using “ordered lists”. To the best of our best knowledge, “ordered lists” in Lisp

is equivalent to our linked-list implementation in C.

We run tests in the “NY” and “COL” maps, two large-scale city-like road networks,745

as provided in the dataset of the 9th DIMACS Implementation Challenge, a commonly

used dataset for multi-objective planning [11, 16, 24, 30, 39].7 The original maps have,

for each edge, two cost components (i.e., two objectives) representing travel distance d

and travel time t. Following Casas et al. [40], we use the number of edges q in a

path as the third cost component. For the experiment with four and five objectives,750

we used the economic cost m, which combines toll and fuel consumption according to

the road category of New York (NY) (see [19] for additional details), and r, a random

integer number between 1 and 100. The order of the objectives are: (q-d-t-m) for four

objectives and (q-d-t-m-r) for five objectives.

Additionally, we run tests in the COL map, which is of bigger size than NY. We755

used three, four and five cost components in this map. Here, we set the edge costs in a

different way from the previous tests in the NY map. We use random integer costs for

all edges and all cost components. The first cost component c1 is set to rnd(1, 1000)

7This dataset is available at http://www.diag.uniroma1.it/˜challenge9/.
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(where rnd stands for random), a random number between 1 and 1000. The other cost

components are generated with the formula ci = ρ×c1+
√
1− ρ2×rnd(1, 1000), i =760

2, 3 · · · ,M , where ρ is a parameter that tunes whether a cost component is correlated

with c1. We use ρ = 0.0001 such that ci is uncorrelated with c1.

All tests are conducted on a Linux machine with 64GB of RAM and a 3.80GHz In-

tel(R) Core(TM) i7-10700K CPU. We generate instances by randomly sampling start-

goal pairs from the graph and report the number of instances in the subsequent tables.765

We also report the mean, minimum, maximum and median runtime over these instances

in the tables. Each instance has a runtime limit of 3600 seconds.

We report experimental results with three, four and five objectives, for the linked-

list based implementations (i.e., NAMOA*dr-LL, TOA*-Late-LL, EMOA*-Late-LL,

TOA*-Late-BBST and EMOA*-Late-BBST) and for the array-based implementa-770

tions (i.e., NAMOA*dr-AR, TOA*-Late-AR, EMOA*-Late-AR, TOA*-Late-BS and

EMOA*-Late-BS) in the tables. We evaluated 100 instances for three, four and five

objectives in NY and COL. In our tests, all implementations time out for some of the

instances, which are removed from the tables. This is the reason that the “solved”

columns have different total numbers across different tables.775

6.1. Experimental Results with Three Objectives

Table 3 shows the number of instances solved within the runtime limit and the

runtime statistics for instances with M = 3 in NY and and COL maps. In the NY

map, we can see that TOA*-Early-BBST is faster than NAMOA*dr-LL in terms of

the median runtime but slower in terms of the mean runtime, while in the COL map,780

TOA*-Early-BBST is only faster than NAMOA*dr-LL in terms of the min runtime

and slower in all other three runtime metrics. A possible reason is that, with early

dominance checking, the front sets are filtered and updated after the generation of each

label, which leads to more frequent operations on BBSTs such as rotations and thus

slows down the search.785

Among the implementations that use the linked-list, TOA*-Late-BBST is the

fastest implementation, due to both its late dominance checking and the use of BB-

STs to represent the front sets. For the array-based implementations, similar trends to

34



solved tmean tmax tmin tmedian

NY with 3 Objectives (avg |sols| = 4, 396)
(|V | = 264, 346, |E| = 730, 100)

NAMOA*dr-LL 98/100 127.97 3,600.00 0.12 1.05
TOA*-Early-BBST 98/100 150.74 3,600.00 0.12 0.88
TOA*-Late-LL 100/100 95.17 2,541.85 0.13 0.97
TOA*-Late-BBST 100/100 44.23 1,264.57 0.11 0.70
NAMOA*dr-AR 100/100 47.73 1,732.40 0.11 0.59
TOA*-Early-BS 100/100 48.50 1,813.65 0.11 0.57
TOA*-Late-AR 100/100 20.27 670.94 0.11 0.54
TOA*-Late-BS 100/100 17.30 587.80 0.11 0.49

COL with 3 Objectives (avg |sols| = 6, 298)
(|V | = 435, 666, |E| = 1, 042, 400)

NAMOA*dr-LL 100/100 54.97 1,280.97 0.21 1.04
TOA*-Early-BBST 100/100 70.97 1,014.58 0.19 1.36
TOA*-Late-LL 100/100 54.52 1,264.80 0.19 1.04
TOA*-Late-BBST 100/100 34.49 1,017.19 0.19 1.37
NAMOA*dr-AR 100/100 17.20 227.40 0.20 0.66
TOA*-Early-BS 100/100 17.16 216.37 0.20 0.63
TOA*-Late-AR 100/100 8.60 136.76 0.20 0.61
TOA*-Late-BS 100/100 7.75 99.40 0.20 0.60

Table 3: Instances solved and statistics on runtimes t (in seconds), When an algorithm times out after 3,600
seconds, we use 3,600 in the calculations.

the linked-list based implementations can be observed, and TOA*-Late-BS runs faster

than the other three array-based implementations, due to late dominance checking and790

binary search.

Additionally, in both maps, we observe that the array-based implementations are

faster and solve more instances than their linked-list based counterparts. Such a reduc-

tion in runtime shows the runtime benefit of using arrays as the underlying implementa-

tion of the front set in comparison against using linked-lists. In particular,TOA*-Late-795

BS runs faster than all implementations, due to the late dominance checking, binary

search and the use of arrays. Finally, it is worthwhile noting that, regardless of the data

structure (i.e., array or linked-list) or the dominance checking approach (i.e., binary

search or linear scan) used by the specific implementation, they all belong to the same

EMOA* framework as suggested in this paper, which demonstrates the generality and800

versatility of the proposed framework.
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solved tmean tmax tmin tmedian

NY with 4 Objectives (avg |sols| = 17, 719)
NAMOA*dr-LL 38/40 710.46 3,600.00 0.15 3.11
EMOA*-Early-BBST 38/40 535.14 3,600.00 0.15 3.26
EMOA*-Late-LL 38/40 597.67 3,600.00 0.15 2.42
EMOA*-Late-BBST 38/40 560.19 3,600.00 0.15 2.04
NAMOA*dr-AR 40/40 98.87 1,038.64 0.15 1.10
EMOA*-Early-BS 40/40 83.21 1,056.59 0.15 1.09
EMOA*-Late-AR 40/40 108.71 1,171.57 0.15 1.02
EMOA*-Late-BS 40/40 71.36 929.41 0.15 0.89

COL with 4 Objectives (avg |sols| = 40, 500)
NAMOA*dr-LL 68/91 1,155.03 3,600.00 0.28 81.45
EMOA*-Early-BBST 68/91 1,139.33 3,600.00 0.26 94.04
EMOA*-Late-LL 68/91 1.149.07 3,600.00 0.28 80.26
EMOA*-Late-BBST 69/91 1,100.74 3,600.00 0.27 70.02
NAMOA*dr-AR 86/91 460.16 3,600.00 0.27 12.63
EMOA*-Early-BS 87/91 427.32 3,600.00 0.28 11.93
EMOA*-Late-AR 89/91 367.92 3,600.00 0.26 12.15
EMOA*-Late-BS 91/91 253.63 3,586.16 0.28 10.60

Table 4: Instances solved and statistics on runtimes t (in seconds), When an algorithm times out after 3,600
seconds, we use 3,600 in the calculations.

6.2. Experimental Results with Four and Five Objectives

Tables 4 and 5 show the number of instances solved within the runtime limit and

the runtime statistics for instances with four and five objectives, respectively. Here,

similar trends to the results of M = 3 can be observed. Specifically, EMOA*-Late-BS805

is still the fastest among all the implementations. In addition, as M increases from 3

to 5, the runtime of all implementations increases, and the number of instances solved

by each implementation decreases.

In addition, we observe that EMOA*-Early sometimes runs faster than their

EMOA*-Late counterparts when M = 5. For example, in Table 5, EMOA*-Early-810

BBST runs faster than EMOA*-Late-BBST, and NAMOA*dr-AR runs faster than

EMOA*-Late-AR, in terms of both the mean runtime and the median runtime. The

reason is that with five objectives, the open list could be huge since it can potentially

contain several dominated labels per vertex in the EMOA*-Late based implementa-

tions. In contrast, EMOA*-Early based implementations can conduct early dominance815

checks and prune labels to avoid having many labels in OPEN. This can speed up heap

operations when adding labels into or extracting labels from OPEN. In the 59 instances
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solved tmean tmax tmin tmedian

NY with 5 Objectives (avg |sols| = 34, 142)
NAMOA*dr-LL 21/29 1,140.13 3,600.00 0.20 15.62
EMOA*-Early-BBST 21/29 1,108.30 3,600.00 0.19 12.98
EMOA*-Late-LL 21/29 1,139.07 3,600.00 0.20 15.40
EMOA*-Late-BBST 21/29 1,115.68 3,600.00 0.18 14.71
NAMOA*dr-AR 26/29 610.63 3,600.00 0.19 2.93
EMOA*-Early-BS 28/29 477.73 3,600.00 0.18 2.28
EMOA*-Late-AR 25/29 645.63 3,600.00 0.19 3.60
EMOA*-Late-BS 29/29 444.60 3,275.12 0.18 2.27

COL with 5 Objectives (avg |sols| = 31, 857)
NAMOA*dr-LL 47/59 1,108.73 3,600.00 0.36 422.12
EMOA*-Early-BBST 49/59 1,034.56 3,600.00 0.33 400.66
EMOA*-Late-LL 49/59 1,086.85 3,600.00 0.36 418.20
EMOA*-Late-BBST 49/59 1,041.06 3,600.00 0.33 444.19
NAMOA*dr-AR 58/59 304.91 3,600.00 0.33 45.61
EMOA*-Early-BS 59/59 201.01 2,254.37 0.34 35.36
EMOA*-Late-AR 58/59 314.16 3,600.00 0.33 58.24
EMOA*-Late-BS 59/59 177.50 2,239.07 0.34 32.46

Table 5: Instances solved and statistics on runtimes t (in seconds), When an algorithm times out after 3,600
seconds, we use 3,600 in the calculations.

CheckClosed CheckOpen FilterClosed FilterOpen

NY with 3 Cost Components
NAMOA*dr-AR 2,310M 1,534M 365M 1,447M
TOA*-Late-AR 2,758M 365M

NY with 4 Cost Components
NAMOA*dr-AR 35,889M 1,385M 3,379M 1,273M
EMOA*-Late-AR 40,737M 3,379M

Table 6: Number of dominance checks and filter operations.

of the COL map, when M = 3, the search conducts 9,393 updates of OPEN on aver-

age. When M = 5, the search conducts 103,723 updates of OPEN on average. This

demonstrates that when M is large, not only dominance checking but also heap oper-820

ations can become important factors that affect the overall computational efficiency of

the implementation.

Finally, we observe from Tables 3, 4 and 5 that in certain settings the average

runtime of NAMOA*dr-AR is faster than EMOA*-Late-AR. To pinpoint the reason

for this, we report in Table 6 the number of dominance checking and filtering oper-825

ations conducted by both implementations. Noteworthy is that NAMOA*dr-AR and

EMOA*-Late-AR use the same implementation of the dominance checking operation.
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With three objectives NAMOA*dr-AR performs more dominance checking operations

than EMOA*-Late-AR (2,310M+1,534M = 3,844M compared to 2,758M) and indeed

runs slower. In contrast with four objectives NAMOA*dr-AR performs less dominance830

checking operations than EMOA*-Late-AR (35,889+1,385M = 37,274M compared to

40,737M) and indeed runs faster.

To understand why NAMOA*dr-AR performs less dominance checking operations

than EMOA*-Late-AR, note that in EMOA*-Late-AR, F(v) is identical to the closed

set Fclosed(v). NAMOA*dr-AR further maintains Fopen(v) due to the early dominance835

checking it performs. EMOA*-Late-AR avoids early checking [11] and converts early

checking against Fopen(v) in NAMOA*dr-AR into late checking against Fclosed(v).

This conversion can lead to more dominance checking operations while making each

checking operation computationally cheaper. However, as the number of objec-

tives increases, the size of the front set increases. In such settings, the dominance840

checking against Fclosed(v) typically takes more time. NAMOA*dr-AR is able to

avoid some of these dominance checking against Fclosed(v) by running early check-

ing against Fopen(v).

7. Conclusion

This article considers the Multi-Objective Shortest-Path Problem (MO-SPP) with845

an arbitrary number of objectives. We observe that, during the search process of

MOA*-like algorithms, the front set at each vertex is computed incrementally by solv-

ing the Dominance Checking (DC) problem and Non-Dominated Set Update (NSU)

problems iteratively. Based on this observation, we first develop a search framework

called Enhanced Multi-Objective A* (EMOA*), which abstracts and highlights the key850

procedures related to these expensive dominance checking. We show that the existing

BOA* algorithm [11] is an instantiation of our EMOA* framework when there are two

objectives. Within the EMOA* framework, we develop two different yet closely-related

algorithms with fast dominance checking, and discuss their relationship to several other

algorithms within the EMOA* framework. Both our algorithms can handle an arbitrary855

number of objectives. We show that both algorithms are guaranteed to find the exact
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Pareto-optimal front for MO-SPP. We analyze the runtime complexity of the proposed

methods, and verify our framework by implementing and testing several algorithms

that follow the EMOA* framework. Our experimental results show that our algorithms

runs faster than the baselines on average, and is particularly advantageous for problem860

instances with three objectives.

For future work, we plan to investigate how new approaches and data structures to

solve the NSU problem can be incorporated into our framework. These include (but

are not limited to) skip lists [41] and binary space partitioning [23]. These approaches,

typically developed by the evolutionary-algorithms community (see, e.g., [42, 43] and865

references within) have the potential to dramatically improve the running time of algo-

rithms instantiated by our framework. In addition, it remains an open question how to

analyze the worst-case and average-case number of non-dominated labels at a vertex or

over the entire graph after using these fast dominance checking techniques, which may

provide new insight about these MOA*-based algorithms. Furthermore, the EARLY870

and LATE checking strategy spans a spectrum and the middle ground of this spectrum

is worthwhile further investigation. Specifically, it is possible for a MOA* search to

rely on lightweight early checking, which can be fast but does not remove all domi-

nated labels, and rely on the late checking as well to take care of the remaining domi-

nated labels when needed. Finally, one can consider further extending the framework875

to approximate the Pareto-optimal front for MO-SPP as in [30], handling dynamic en-

vironments [26, 27] or use the algorithms in this article as a building block to solve

multi-agent planning problems [44].
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