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Abstract— This paper introduces a new formulation that
finds the optimum for the Moving-Target Traveling Salesman
Problem (MT-TSP), which seeks to find a shortest path for
an agent, that starts at a depot, visits a set of moving targets
exactly once within their assigned time-windows, and returns
to the depot. The formulation relies on the key idea that when
the targets move along lines, their trajectories become convex
sets within the space-time coordinate system. The problem
then reduces to finding the shortest path within a graph of
convex sets, subject to some speed constraints. We compare
our formulation with the current state-of-the-art Mixed Integer
Conic Program (MICP) formulation for the MT-TSP. The
experimental results show that our formulation outperforms
the MICP for instances with up to 20 targets, with up to two
orders of magnitude reduction in runtime, and up to a 60%
tighter optimality gap. We also show that the solution cost from
the convex relaxation of our formulation provides significantly
tighter lower-bounds for the MT-TSP than the ones from the
MICP.

I. INTRODUCTION

Given a set of stationary targets and the cost of traversal
between any pair of these targets, the classical Traveling
Salesman Problem (TSP) seeks to find the shortest tour for an
agent such that it visits all the targets exactly once. The TSP
is one of the most fundamental problems in combinatorial
optimization, with several applications including unmanned
vehicle planning [1]–[4], transportation and delivery [5],
monitoring and surveillance [6], [7], disaster management
[8], precision agriculture [9], and search and rescue [10],
[11]. In this paper, we consider the generalization of the TSP,
where the targets follow some predefined trajectories, and
also have associated time-windows during which they need to
be visited. The objective is to minimize the distance traversed
by the agent. We refer to this generalization as the Moving-
Target TSP or MT-TSP for short. In the literature, we find
different variants of the MT-TSP, motivated by practical
applications such as defending an area from oncoming hostile
rockets or Unmanned Aerial Vehicles [12]–[14], monitoring
and surveillance [15]–[18], resupply missions with moving
targets [12], dynamic target tracking [19], and industrial
robot planning [20].

The speed of the targets are generally assumed to be no
greater than the agent’s maximum speed [12]. When the
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Fig. 1. A feasible solution to an example instance of the MT-TSP where
5 targets move along lines. The agent’s tour is given in blue, and the part
of each target’s trajectory corresponding to its time-window where they can
be visited by the agent are given by colored solid segments.

speed of all the targets reduces to 0, the MT-TSP reduces
to the classical TSP. Hence, MT-TSP is NP-hard. Currently,
the literature presents exact and approximation algorithms
for some very restricted cases of the MT-TSP variants where
the targets move in the same direction with the same speed
[20], [21], move along the same line [12], [22], or move
along lines through the depot, towards or away from it [12].
Several heuristic based approaches have also been introduced
in the literature [15]–[17], [19], [23]–[27] that finds feasible
solutions, but gives no information on how far they are from
the optimum.

The objective of this paper is to find exact solutions
to a less restricted case of the MT-TSP where each tar-
get moves along its own line, with fixed speeds (Fig. 1).
Currently, the only approach that does this, is the MICP
(specifically, a mixed-integer Second Order Conic Program
(SOCP)) introduced in [14]. Hence, we use this formulation
as a baseline, and introduce an alternative formulation that
finds the optimum for the MT-TSP. Our formulation relies
on the key idea that when the targets move along lines,
their trajectories become convex sets within the space-time
coordinate system. This reduces the MT-TSP to a problem
of finding a shortest tour in a graph of convex sets [28],
subject to some additional speed constraints. This allows us
to formulate the MT-TSP as a biconvex, binary program,
which we then reformulate as a mixed-integer SOCP, by
leveraging the ideas presented in [28].

We prove that our approach finds the optimum to the MT-
TSP, and provide computational results to corroborate the



performance of our formulation. We find that our approach
vastly outperforms the baseline and scales much better when
increasing the time-window duration and the number of
targets, achieving up to two orders of magnitude faster
average runtime and up to 60% improvement in the average
optimality gap. We also show that our formulation has a
much stronger convex relaxation than the baseline, which
can be used to find lower-bounds to the MT-TSP with
significantly lower computational burden.

II. PROBLEM DEFINITION

All the targets and the agent move in a 2D (x, y) plane.
Let Vtar := {1, 2, · · · , n} denote the set of n moving targets,
and let s be the depot. Without loss of generality, we make
a copy of the depot and refer to it as s′ and require the
agent to return to s′ at the end of its tour. Let V := Vtar ∪
{s, s′}. Given a node i ∈ V , the time-window associated
with it is denoted by [ti, ti]. The (x, y) position occupied
by node i at time ti and ti is denoted by (p

i,x
, p

i,y
) and

(pi,x, pi,y) respectively, and the velocity coordinates of node
i is denoted by (vi,x, vi,y). The maximum agent speed is
denoted by vmax. Note that we fix ts = ts = 0 since the
agent tour starts at time 0. In addition, we fix ts′ = 0 and
ts′ = T where T is the time-horizon, so that the agent is free
to complete the tour at any time within [0, T ]. Also note that
the velocity of the depot, (vs,x, vs,y) and the velocity of the
depot’s copy, (vs′,x, vs′,y) are fixed to be (0, 0) since they
are stationary. We say that the agent visits a moving target
(say i) if there is a time instant in [ti, ti] when the position
of the agent coincides with the position of the target i. Any
feasible tour for the agent will start from s, visit each target
in Vtar exactly once and return to s′. The objective of the
MT-TSP is to find a feasible tour for the agent such that the
distance traveled by the agent along the tour is minimized.

III. MICP FOR MT-TSP

This section presents the current state-of-the-art MICP for-
mulation introduced in [14] for the MT-TSP. The formulation
is slightly modified in this paper to include the additional
requirement that the agent tour ends at s′. To proceed further,
we first construct a directed graph (V,E) where the edges
in E are added as follows: from node s to all the nodes in
Vtar, from each node in Vtar to every other node in Vtar, and
finally, from every node in Vtar, to node s′. For any node
i ∈ V , Ein

i and Eout
i denotes the set of all edges entering

and exiting i.
Next, we define the decision variables for this formulation.

For each node i ∈ V , the real variable ti represents the time
at which the agent visits i. For each edge e = (i, j) ∈ E,
variable ye ∈ [0, 1] represents the flow through that edge. In
a binary program, ye ∈ {0, 1}, and it represents the decision
of whether or not edge e is chosen. We will consider ye
as a binary variable unless otherwise stated. The auxiliary
variable l̃(pi, pj) ≥ 0 for each e = (i, j) ∈ E represents
ye ∥pj − pi∥2 where, for some node i, pi = (pi,x, pi,y)
describes the position of that node at time ti. The formulation
also introduces for each e = (i, j) ∈ E, other real auxiliary

variables, lx(pi, pj) and ly(pi, pj) which represent pj,x−pi,x
and pj,y − pi,y respectively, and finally l(pi, pj) ≥ 0 which
will be used to define the second-order cone constraints.

We also note that there is a parameter R which denotes
the length of the diagonal of the square area that contains
the depot and all the target trajectories. The fact that the
Euclidean length of any line segment within the square area
cannot exceed R will be used in formulating one of the
constraints in the formulation. Now, the MICP formulation
for the MT-TSP is as follows:

min
∑

e=(i,j)∈E

l̃(pi, pj) (1)

subject to constraints∑
e∈Eout

s

ye = 1, (2)

∑
e∈Ein

s′

ye = 1, (3)

∑
e∈Ein

i

ye = 1, ∀ i ∈ Vtar, (4)

∑
e∈Ein

i

ye =
∑

e∈Eout
i

ye, ∀ i ∈ Vtar, (5)

ti ≤ ti ≤ ti, ∀ i ∈ V, (6)
lx(pi, pj)− ((p

j,x
+ tjvj,x − tjvj,x)

− (p
i,x

+ tivi,x − tivi,x)) = 0, ∀ e = (i, j) ∈ E,
(7)

ly(pi, pj)− ((p
j,y

+ tjvj,y − tjvj,y)

− (p
i,y

+ tivi,y − tivi,y)) = 0, ∀ e = (i, j) ∈ E,
(8)

l̃(pi, pj) ≤ vmax(tj − ti + T (1− ye)), ∀ e = (i, j) ∈ E,
(9)

l(pi, pj) = l̃(pi, pj) +R(1− ye), ∀ e = (i, j) ∈ E, (10)

(lx(pi, pj))
2 + (ly(pi, pj))

2 ≤ (l(pi, pj))
2,

∀ e = (i, j) ∈ E.
(11)

The objective (1) is to minimize the total tour length of the
agent. The condition that the agent departs from the depot
once, and arrives at the depot’s copy once, is described by
(2) and (3) respectively. The constraints, (4) ensure that each
target is visited exactly once by the agent, and the flow
conservation for all the target nodes are ensured by (5).
Constraints (2) to (5) are fundamental to the MT-TSP, and
ensure a valid agent path that starts at the depot, visits all the
targets exactly once, and returns to the depot. Hence, these
constraints will be repeated for all the formulations in this
article. The condition requiring the agent to visit each node
within its time-window is given by (6), and the definitions of
the auxiliary variables lx(pi, pj) and ly(pi, pj) are captured
through (7) and (8), respectively.

Now, we will explain the big-M constraints, (9), and (10),
for each edge e = (i, j) ∈ E. First, consider the time-
feasibility constraints, (9). These constraints describe the



condition that if ye = 1, then l̃(pi, pj) ≤ vmax(tj − ti).
However, if ye = 0, then no restrictions are placed on ti and
tj . Second, consider the constraints, (10). With the help of
(7) and (8), these constraints, along with the second-order
cone constraints, (11) describe the condition that l̃(pi, pj) ≥
∥pj − pi∥2 if ye = 1. However, if ye = 0, then l̃(pi, pj) is
free to take any value.

Although this formulation describes the MT-TSP well, it
is challenging to solve in practice. In this paper, we present
a graph of convex sets (GCS) based MICP (MICP-GCS) that
is significantly faster to solve, and provides much stronger
relaxations. Prior to presenting this formulation, we will
restate the current MICP as a biconvex binary program. This
will aid us in proving that an optimal solution to MICP-GCS
indeed provides an optimal solution to the MT-TSP.

IV. MICP ON THE GRAPH OF CONVEX SETS

A. Biconvex Binary Program for the MT-TSP

In this section, we will restate the MICP for the MT-TSP
as a biconvex, binary program. For simplicity, we will refer
to this program as the biconvex formulation. First, we present
the decision variables. For each node i ∈ V , we reuse the
variable ti from the MICP. In addition, we introduce real
auxiliary variables, pi,x and pi,y that explicitly define the
(x, y) coordinates of pi. For each edge e = (i, j) ∈ E, we
use the binary variable ye from before, as well as introduce
real variables ze,x, ze,y , and ze,t, representing yepi,x, yepi,y ,
and yeti, and real variables z′e,x, z′e,y , and z′e,t, representing
yepj,x, yepj,y , and yetj . Finally, we replace the variables
lx(pi, pj), ly(pi, pj), and l̃(pi, pj) from the MICP with real
auxiliary variables lx(z̃e, z̃

′
e), ly(z̃e, z̃

′
e), and l(z̃e, z̃

′
e) ≥ 0

respectively. Note that z̃e and z̃′e are notations describing
(ze,x, ze,y) and (z′e,x, z

′
e,y) respectively. Also, notations ze,

and z′e describe (z̃e, ze,t), and (z̃′e, z
′
e,t) respectively. The

variable l(pi, pj) introduced previously for each edge is not
used in the biconvex formulation. This is because the big-M
constraints are removed here. The formulation is presented
below:

min
∑

e=(i,j)∈E

l(z̃e, z̃
′
e) (12)

subject to constraints (2), (3), (4), (5), (6),

pi,x = p
i,x

+ tivi,x − tivi,x, ∀ i ∈ V, (13)

pi,y = p
i,y

+ tivi,y − tivi,y, ∀ i ∈ V, (14)

lx(z̃e, z̃
′
e) = (z′e,x − ze,x), ∀e = (i, j) ∈ E, (15)

ly(z̃e, z̃
′
e) = (z′e,y − ze,y), ∀e = (i, j) ∈ E, (16)

l(z̃e, z̃
′
e) ≤ vmax(z

′
e,t − ze,t), ∀e = (i, j) ∈ E, (17)

(lx(z̃e, z̃
′
e))

2 + (ly(z̃e, z̃
′
e))

2 ≤ (l(z̃e, z̃
′
e))

2,

∀ e = (i, j) ∈ E,
(18)

ze = (yepi, yeti), z
′
e = (yepj , yetj), ∀e = (i, j) ∈ E.

(19)

(p
i,x

, p
i,y

, ti)

(pi,x, pi,y, ti)

x

y

t
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Fig. 2. The trajectory-segment that corresponds to the time-window of
some node i ∈ V , is a line segment within the space-time coordinate system
(x, y, t). The set of all points in the line segment forms the convex set Xi.

This formulation shares constraints (2) to (6) from the
MICP. Constraints (13) and (14) describe variables pi,x
and pi,y . Apart from the binary requirement for all the ye
variables, the non-convexities of this program come only
from the bilinear constraints, (19). These constraints will be
utilized to achieve the role satisfied by the big-M constraints
in the MICP. First, notice how for each edge e = (i, j) ∈
E, when ye = 0, (19) becomes ze = z′e = (0, 0, 0).
Consequently, (15), (16) become lx(z̃e, z̃

′
e) = ly(z̃e, z̃

′
e) = 0.

However, when ye = 1, (19) becomes ze = (pi, ti), z′e =
(pj , tj) and consequently, (15), (16) become lx(z̃e, z̃

′
e) =

pj,x − pi,x, and ly(z̃e, z̃
′
e) = pj,y − pi,y .

Now, consider (17). For each edge e = (i, j) ∈ E, when
ye = 1, these constraints become l(z̃e, z̃

′
e) ≤ vmax(tj − ti).

However, when ye = 0, we get l(z̃e, z̃
′
e) ≤ 0, allowing ti,

and tj to be free. Finally, consider (18). We see how these
constraints with the help of (15), (16) become l(z̃e, z̃

′
e) ≥

∥pj − pi∥2 when ye = 1, but allow l(z̃e, z̃
′
e) to take any

value when ye = 0. Recall how the big-M constraints, (9),
(10), and the constraints, (11) achieve the same role as (17)
and (18) for l̃(pi, pj). Hence, in the biconvex formulation,
constraints (17) and (18) replace constraints (9), (10) and
(11) from the MICP, while establishing the relationship,

l(z̃e, z̃
′
e) = l̃(pi, pj). (20)

From (20), we see how both the MICP and the biconvex
formulation have the same optimal value. Moreover, we can
recover an optimal tour for the MT-TSP from the solution of
the biconvex formulation by recovering the (pi, ti) for each
node i ∈ V .

Now, we discuss the key idea behind the GCS-based
MICP we introduce in this paper. Notice how the set of
all (pi,x, pi,y, ti) that satisfy (6), (13), and (14) for each
node i ∈ V represents the trajectory-segment of that node
within its time-window. These trajectory-segments are line
segments when expressed within the (x, y, t) coordinate
system as shown in the example illustration in Fig. 2. Hence,
the trajectory-segment corresponding to each node i can be
considered a convex set Xi corresponding to that node, and



the agent is required to visit a point within Xi. This allows
us to solve the MT-TSP by leveraging the ideas presented
in [28], where the problem was to find the shortest paths
in graphs of convex sets. To summarize, (6), (13), and
(14), together can be represented using the following set of
constraints:

(pi, ti) ∈ Xi, ∀ i ∈ V. (21)

Note that the non-convexities that arise from the bilinear
constraints make the biconvex formulation very challenging
to solve. However, in the next section, we will introduce our
MICP-GCS formulation for the MT-TSP, which can be easily
handled by standard solvers.

B. GCS-Based Mixed Integer Conic Program (MICP-GCS)
In this section, we present our new MICP-GCS formula-

tion for the MT-TSP. First, we discuss the decision variables
for this formulation. For each edge e = (i, j) ∈ E, we
use the same variables ye, ze,x, ze,y , ze,t, z′e,x, z′e,y , z′e,t,
lx(z̃e, z̃

′
e), ly(z̃e, z̃

′
e), l(z̃e, z̃

′
e) that we introduced in the

biconvex formulation. Now, we present MICP-GCS:

min
∑

e=(i,j)∈E

l(z̃e, z̃
′
e) (22)

subject to constraints (2), (3), (4), (15), (16), (17), (18),∑
e∈Ein

i

(z′e,t, ye) =
∑

e∈Eout
i

(ze,t, ye), ∀ i ∈ Vtar, (23)

(ze, ye) ∈ X̃i, (z
′
e, ye) ∈ X̃j , ∀ e = (i, j) ∈ E. (24)

The MICP-GCS formulation differs from the biconvex
formulation in the following ways: The constraints, (23) are
obtained by combining (5) with the additional constraints,∑

e∈Ein
i

z′e,t =
∑

e∈Eout
i

ze,t for each node i ∈ Vtar. These
additional constraints ensure that the time at which the agent
visits each target i will be equal to the time at which the agent
departs from target i. Additionally, (21) which encapsulates
(6), (13), (14), as well as the bilinear constraints, (19) are
replaced by the constraints, (24). These constraints require
that for each edge e = (i, j) ∈ E, (ze, ye) and (z′e, ye)
lie within the perspective1 of the convex sets Xi and Xj

respectively. This is a compact way of representing the set
of constraints for all the edges e = (i, j) ∈ E as shown
below:

yeti ≤ ze,t ≤ yeti, (25)
yetj ≤ z′e,t ≤ yetj , (26)

ze,x − vi,xze,t − ye(pi,x − tivi,x) = 0, (27)

ze,y − vi,yze,t − ye(pi,y − tivi,y) = 0, (28)

z′e,x − vj,xz
′
e,t − ye(pj,x − tjvj,x) = 0, (29)

z′e,y − vj,yz
′
e,t − ye(pj,y − tjvj,y) = 0. (30)

1The perspective of a compact, convex set X ⊂ Rn is defined as X̃ :=
{(x, λ) : λ ≥ 0, x ∈ λX}.

From an optimal solution to the MICP-GCS, we can
recover an optimal agent tour for the biconvex formulation
as follows: For each node i ∈ V , find the optimal (pi, ti),
using the following equations:

(pi, ti) =
∑

e∈Ein
i

z′e, ∀ i ∈ V \ {s}, (31)

(ps, ts) =
∑

e∈Eout
s

ze. (32)

C. Proof of Validity

In this section, we will show the correctness of the MICP-
GCS formulation by proving the following theorem.

Theorem 1. The optimal value of the MICP-GCS formula-
tion is equal to the optimal value of the biconvex formulation
for the MT-TSP. An optimal agent tour for the MT-TSP can
be recovered from the solution of MICP-GCS by choosing
(pi, ti) ∀ i ∈ V as shown in (31) and (32).

Proof: Let Etour be the set of all edges with ye = 1,
obtained from a solution to either of the two formulations.
The constraints in both the formulations require that the
edges in Etour form a path that starts at s, visits all the
target nodes once, and ends at s′, thereby forming an agent
tour. For each edge e /∈ Etour, ze = z′e = (0, 0, 0) for both
the formulations. This is achieved by (19) in the biconvex
formulation, and by (24) in the MICP-GCS formulation.
Consequently, the cost addends corresponding to these edges
become l(z̃e, z̃

′
e) = 0 for both formulations. Now, consider

each edge e = (i, j) ∈ Etour. In the biconvex formulation,
(19) becomes ze = (pi, ti), z′e = (pj , tj). Additionally, (21)
requires (pi, ti) ∈ Xi, (pj , tj) ∈ Xj . These two requirements
are the same as saying ze ∈ Xi, z′e ∈ Xj , and for any
two adjacent edges e = (i, j) and f = (j, k) in the agent
tour, z′e = zf . In the MICP-GCS formulation, (24) becomes
ze ∈ Xi, z′e ∈ Xj , and the additional flow requirement
in (23) ensures that for any two adjacent edges e = (i, j)
and f = (j, k) in the agent tour, z′e = zf . Therefore, the
cost addends corresponding to edges e ∈ Etour become
l(z̃e, z̃

′
e) for both the formulations. Now, suppose that we

have a solution to the MICP-GCS formulation. The (pi, ti)
corresponding to each i ∈ V can then be obtained as
shown in (31) and (32) since they ensure (pi, ti) = ze and
(pj , tj) = z′e for each e = (i, j) ∈ E with ye = 1.

V. NUMERICAL RESULTS

A. Test Settings and Instance Generation

All the tests were run on a laptop with an Intel Core I7-
7700HQ 2.80GHz CPU, and 16GB RAM. The implemen-
tation was in Python 3.11.6, and both the MICP as well as
MICP-GCS formulations were solved using Gurobi 10.0.3
optimizer [29]. All the Gurobi parameters were set to their
default values, except for TimeLimit2, which was set to 1800.

A total of 80 instances were generated, 20 each for 5,
10, 15, and 20 targets. The instances were defined by the

2Limits the total time expended (in seconds).



number of targets n, a square area of fixed size S = 100
units with corresponding diagonal length R =

√
2S, a fixed

time-horizon T = 150 secs, the depot location fixed at the
center (0, 0) of the square, and finally, a set of randomly
generated linear trajectories corresponding to the n targets
such that each target has a constant speed within [0.5, 1]
unit/sec and is confined within the square area.

For each instance, we ran experiments where we varied
two additional test parameters: the maximum agent speed
vmax, and the time-windows corresponding to the targets.
vmax was varied to be 4, 6, and 8 unit/sec, and the time-
windows were varied to be of durations 25, 50, and 75 secs.
The time-windows were selected such that a feasible solution
could be found for all the generated instances, with all vmax

choices. To do this, we first randomly chose a sequence in
which the agent visits the targets, and then found the quickest
agent tour corresponding to that sequence by fixing vmax at
its lowest choice (which is 4 unit/sec). If the time for the
tour was more than T , we tried another random sequence.
Otherwise, we took the times when the agent visited each
target, and defined time-windows that contained these times.
Note that when varying time-windows, we ensured that the
time-window of duration 25 lies within the time-window
of duration 50, which then lies within the time-window of
duration 75, for each target.

To evaluate the MICP and MICP-GCS formulations, we
use % Gap, and runtime, which we will now explain.
Given vmax, a time-window duration, and the formulation
of choice, the solver is first run on all the 20 instances
corresponding to a given number of targets. The optimality
gap value from the solver for an instance is defined as
|zP−zD|

|zP | × 100, where zP is the primal (feasible) objective,
and zD is the dual (lower-bound) objective. % Gap denotes
the average of the smallest gap values output by the solver
for all these instances, and runtime denotes the average of
the run-times output by the solver for all these instances.

B. Varying the Time-Window Duration

In this section, we consider the experiments where the
time-window durations are varied. We do this by fixing
vmax at 4, and solving all the instances for the time-window
durations (25, 50, and 75). The results for this experiment
are illustrated in Fig. 3, with (a), (b), and (c) corresponding
to durations 25, 50, and 75 respectively. We observe that
the problem becomes more challenging to solve for both
the approaches as the number of targets increases. More
importantly, this difficultly becomes more prominent as the
time-window duration increases. The main advantage of
MICP-GCS here is that it scales significantly better than the
MICP against a larger number of targets and bigger time
windows. We see this especially in the case of 15 targets
where the % Gap always fully converges for the MICP-GCS
and its runtime increases noticeably only with the largest
time-window of duration 75, as compared to the MICP
whose % Gap and runtime increases dramatically as the time-
windows gets bigger. Note how the problem is challenging
for both the approaches at 20 targets. However, we see that

MICP-GCS
% GapRuntime

R
u
n
ti
m
e
(s
)

%
G
ap

No. of Targets

(a)

(b)

(c)

MICP

R
u
n
ti
m
e
(s
)

R
u
n
ti
m
e
(s
)

%
G
ap

%
G
ap

Fig. 3. Numerical results comparing runtime and % Gap of the MICP and
MICP-GCS for a fixed vmax of 4, and varying time-window durations of
25 (a), 50 (b), and 75 (c). MICP-GCS scales significantly better than the
MICP, when increasing the time-window duration, and number of targets.
This can be seen especially for 15 targets in (b) and 10 targets in (c) where
it runs up to 2 orders of magnitude faster while providing the same or better
% Gap. Similarly, in the case of 15 targets in (c), and 20 targets in (b) and
(c), MICP-GCS runs up to more than 1000 seconds faster, while providing
a % Gap improvement within a 40-60 range.

the % Gap or the runtime is always significantly improved
for MICP-GCS, for all time-window durations in this case.

C. Varying the Agent Speed

In this section, we consider the second set of experiments
where vmax is varied. We do this by fixing the time-window
duration at 50, and varying vmax to 6, and 8. The results
for this experiment are illustrated in Fig. 4, with (a) and (b)
corresponding to vmax choices of 6 and 8 respectively. Note
that Fig. 3 (b) gives the plot for when vmax is 4. We observe
that the plots look similar for all the three vmax choices, with
the runtime increasing slightly for both the approaches, and
the % Gap getting slightly larger for the MICP, as vmax is
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Fig. 4. Numerical results comparing runtime and % Gap of the MICP
and MICP-GCS for a fixed time-window duration of 50, and varying vmax

choices of 6 (a), and 8 (b). The plots are very similar to the vmax of 4 plot
(Fig. 3 (b)). Hence, here too, MICP-GCS gives two orders of magnitude
faster runtime with a % Gap improvement of close to 10 for 15 targets. For
20 targets, MICP-GCS is still several hundreds of seconds faster, and gives
a % Gap improvement of around 45.

increased. This small increase in difficulty is believed to stem
mostly from the fact that the feasible search space is now
larger, as the agent now has more choices of tours it can take.
In all these plots we again observe that MICP-GCS vastly
outperforms the MICP, both in terms of runtime as well as
% Gap, for 15 and 20 targets.

D. Evaluating the Convex Relaxations

In this section, we evaluate the lower-bounds to the MT-
TSP obtained from the convex relaxations of both the MICP
and MICP-GCS formulations. To do this, we use ratio, and
runtime, which we will now explain. Given a vmax value, a
time-window duration, and the formulation of choice, the
binary constraints are first relaxed, and the solver is run
on all the 20 instances corresponding to a given number
of targets. Ratio is then obtained by finding the ratio of
the best bound output by the solver, and the best bound
output by MICP-GCS previously when the binary constraints
were not relaxed, for all these instances, and then finding
the average of these values. Runtime is obtained by finding
the average of the solver runtime for all these instances.
Note that a higher ratio is always better as it shows that the
convex relaxation provides tight lower-bounds comparable
to the ones from MICP-GCS with binary constraints. The

worst ratio achievable is 0, indicating a trivial lower-bound
from the convex relaxation. The ratios and runtimes found
are summarized in Table I, and Table II respectively.

Expr 5 Tar 10 Tar 15 Tar 20 Tar

Tw25 0.95 0.82 0.77 0.68
Tw50 0.78 0.63 0.61 0.54
Tw75 0.66 0.56 0.48 0.54
Spd6 0.77 0.65 0.61 0.53
Spd8 0.77 0.65 0.61 0.54

TABLE I
NUMERICAL RESULTS PRESENTING THE RATIOS OBTAINED FROM

RELAXED MICP-GCS FOR DIFFERENT EXPERIMENT SETTINGS, AND

NUMBER OF TARGETS. WE DO NOT INCLUDE THE RATIOS FOR RELAXED

MICP HERE, SINCE THEY WERE ALWAYS THE WORST VALUE OF 0. THE

RATIOS GET WORSE WITH MORE TARGETS, AND LARGER

TIME-WINDOWS. VARYING vmax HAS NEGLIGIBLE EFFECT ON THE

RATIO.

Expr 5 Tar 10 Tar 15 Tar 20 Tar

Tw25 0.01 (0.0) 0.03 (0.02) 0.06 (0.04) 0.12 (0.02)
Tw50 0.01 (0.0) 0.02 (0.02) 0.04 (0.04) 0.08 (0.02)
Tw75 0.01 (0.0) 0.01 (0.02) 0.04 (0.06) 0.07 (0.03)
Spd6 0.0 (0.0) 0.01 (0.02) 0.03 (0.04) 0.08 (0.02)
Spd8 0.01 (0.0) 0.01 (0.02) 0.03 (0.04) 0.08 (0.02)

TABLE II
NUMERICAL RESULTS PRESENTING THE RUNTIMES FOR BOTH THE

RELAXED MICP-GCS, AND RELAXED MICP (IN PARENTHESES) FOR

DIFFERENT EXPERIMENT SETTINGS, AND NUMBER OF TARGETS. THE

RUNTIMES INCREASE SLIGHTLY WITH MORE TARGETS, BUT ARE

OVERALL NEGLIGIBLE FOR BOTH FORMULATIONS.

In both the tables, the column Expr represents the ex-
periment settings, and specifies the various choices of vmax

and time-window duration. Here, Tw25, Tw50, and Tw75
represent the same experiment settings used for Fig. 3, where
vmax was set at 4, and the time-window duration was varied
to be 25, 50, and 75 respectively. Similarly, Spd6 and Spd8
represent the experiment settings used for Fig. 4, where the
time-window duration was fixed at 50, and vmax was varied
to be 6 and 8.

In Table I, we only provide the ratios corresponding to
the convex relaxation of MICP-GCS. This is because when
relaxed, the MICP always gave the worst bound of 0. This is
to be expected, since this formulation relies heavily on big-
M constraints. Observe how the lower-bounds from relaxed
MICP-GCS is affected by the number of targets and the time-
window durations, but not from varying choices of vmax.
This is consistent with our previous observations. Although
the lower-bounds to the MT-TSP are somewhat crude here,
especially with larger number of targets and bigger time-
windows, the main advantage of relaxing MICP-GCS comes
from its negligible runtimes as seen in Table II. Observe
that the runtimes from relaxed MICP-GCS are similar to the



ones from the relaxed MICP (values within parentheses), but
provides significantly stronger lower-bounds to the MT-TSP.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced a Mixed Integer Conic
Program based on the graph of convex sets (MICP-GCS),
that finds the optimum to a special case of the Moving-
Target Traveling Salesman Problem where targets move
along lines with constant speeds. We proved the validity
of this new formulation, and presented numerical results to
corroborate its performance. We showed how our MICP-
GCS outperforms the current state-of-the-art MICP across
various experiments, and also how the MICP-GCS has a
much stronger convex relaxation than the baseline MICP.
For future work, we plan on investigating the effectiveness
of MICP-GCS, when extended to handle multiple agents, and
piecewise-convex target trajectories
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