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DMS*: Towards Minimizing Makespan for
Multi-Agent Combinatorial Path Finding

Zhongqiang Ren, Anushtup Nandy, Sivakumar Rathinam and Howie Choset

Abstract—Multi-Agent Combinatorial Path Finding (MCPF)
seeks collision-free paths for multiple agents from their start to
goal locations, while visiting a set of intermediate target locations
in the middle of the paths. MCPF is challenging as it involves
both planning collision-free paths for multiple agents and target
sequencing, i.e., solving traveling salesman problems to assign
targets to and find the visiting order for the agents. Recent work
develops methods to address MCPF while minimizing the sum
of individual arrival times at goals. Such a problem formulation
may result in paths with different arrival times and lead to a
long makespan, the maximum arrival time, among the agents.
This paper proposes a min-max variant of MCPF, denoted as
MCPF-max, that minimizes the makespan of the agents. While
the existing methods (such as MS*) for MCPF can be adapted to
solve MCPF-max, we further develop two new techniques based
on MS* to defer the expensive target sequencing during planning
to expedite the overall computation. We analyze the properties
of the resulting algorithm Deferred MS* (DMS*), and test DMS*
with up to 20 agents and 80 targets. We demonstrate the use of
DMS* on differential-drive robots.

Index Terms—Path Planning for Multiple Mobile Robots or
Agents, Motion and Path Planning, Task and Motion Planning

I. INTRODUCTION

MULTI-Agent Path Finding (MAPF) seeks a set of
collision-free paths for multiple agents from their

respective start to goal locations. This paper considers a
generalization of MAPF called Multi-Agent Combinatorial
Path Finding (MCPF), where the agents need to visit a pre-
specified set of intermediate target locations before reaching
their goals. MAPF and MCPF arise in applications such as
logistics [1]. For instance, factories use a fleet of mobile
robots to visit a set of target locations to load machines for
manufacturing. These robots share a cluttered environment and
follow collision-free paths. In such settings, MAPF problems
and their generalizations naturally arise to optimize operations.

MCPF is challenging as it involves both collision avoid-
ance among the agents as in MAPF, and target sequencing,
i.e., solving Traveling Salesman Problems (TSPs) [2], [3] to
specify the assignment and visiting orders of targets for all
agents. Both the TSP and the MAPF are NP-hard to solve
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Fig. 1. MCPF-max and MCPF-sum. MCPF-max seeks a set of collision-free
paths while minimizing the maximum arrival time of the agents. The color of
a target or goal indicates the assignment constraints, i.e., the subset of agents
that are eligible to visit that target or goal.

to optimality [2], [4], and so is MCPF. A few methods were
developed [5], [6] to address MCPF, and they often formulate
the problem as a min-sum optimization problem, denoted as
MCPF-sum, where the objective is to minimize the sum of
individual arrival times. Such a formulation may result in an
ensemble of paths where some agents arrive early while others
arrive late, which leads to long execution times before all
agents finish their paths. This paper thus proposes a min-max
variant of MCPF (Fig. 1), denoted as MCPF-max, where the
objective is to minimize the maximum arrival time, which is
also called the makespan, of all agents.

To solve MCPF-max, we first adapt our prior MS* algo-
rithm [5], which was designed for MCPF-sum, to address
MCPF-max. Then, we further develop two new techniques
to expedite the planning, and we call the resulting new
algorithm Deferred MS* (DMS*). Specifically, the existing
MS* is a heuristic search approach (such as A*) by iteratively
generating, selecting and expanding states to construct partial
solution paths from the initial state to the goal state. MS* uses
Traveling Salesman Problem (TSP) algorithms to compute
target sequences for the agents. When solving the TSP, agent-
agent collision are ignored, and the cost of resulting target
sequences are thus lower bounds of the true costs to reach
the goals. Therefore, the cost of target sequences provides an
admissible heuristic to guide the state selection and expansion
as in A*. Furthermore, MS* leverages the idea in M* [7] to
first use the target sequences to build a low-dimensional search
space, and then grow this search space by coupling agents to-
gether for planning only when collision happens. By doing so,
MS* interleaves TSP (target sequencing) and MAPF (collision
resolution) techniques using a heuristic search approach.

The first technique developed in this paper is applicable to
MS* for both MCPF-max and MCPF-sum. When expanding
a state, a set of successor states are generated, and for each
of them, MS* needs to invoke the TSP solver to find the
target sequence and the heuristic value of this successor state.
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Since the number of successor states can be large for each
expansion, MS* needs to frequently invokes the TSP solver
which slows down the computation. To remedy this issue, for
each generated successor, we first use a fast-to-compute yet
roughly estimated cost-to-go as the heuristic value, and defer
calling TSP solver for target sequencing until that successor
is selected for expansion.

The second technique is only applicable to MS* when
solving MCPF-max, and does not work for MCPF-sum. Since
the goal here is to minimize the makespan, during the search,
agents with non-maximum arrival time naturally have “mar-
gins” in a sense that they can take a longer path without
worsening the makespan of all agents. We take advantage of
these margins to let agents re-use their previously computed
target sequences and defer the expensive calls of TSP solvers
until the margin depletes.

We analyze the conditions under which DMS* finds an
optimal solution. To verify the methods, we conduct both
simulation in various maps with up to 20 agents and 80 targets,
as well as a simple real robot experiment. The simulation
shows that: (i) DMS* finds paths that are up to 50% cheaper
than an iterative greedy baseline method, and (ii) the new
techniques in DMS* help triple the success rates and reduce
the average runtime to solution comparing to MS*. The robot
experiments show that the planned path are executable, and
inspire future work.

II. RELATED WORK

Multi-Agent Path Finding algorithms fall on a spectrum from
coupled [8] to decoupled [9], trading off completeness and
optimality for scalability. In the middle of this spectrum lie
the dynamically-coupled methods such as M* [7] and CBS
[10], which begin by planning for each agent a shortest path
from the start to the goal ignoring any potential collision with
the other agents, and then couple agents for planning only
when necessary to avoid agent-agent collision.
Traveling Salesman Problems determine both the assignment
and visiting order of the targets for the agents, where there are
multiple intermediate targets to visit. For a single agent, the
Traveling Salesman Problem (TSP) seeks a shortest tour that
visits every vertex in a graph, and is a well-known NP-hard
problem [2]. Closely related to TSP, the Hamiltonian Path
Problem (HPP) requires finding a shortest path that visits each
vertex in the graph from a start vertex to a goal vertex. The
multi-agent version of the TSP and HPP (denoted as mTSP and
mHPP, respectively) are more challenging since the vertices
in the graph must be allocated to each agent in addition to
finding the optimal visiting order of vertices. We refer to all
these problems simply as TSPs. Different methods have been
developed [2], [11], [12] to solve TSPs, trading off solution
optimality for runtime efficiency. This paper does not develop
new TSPs solvers and leverage the existing ones.
Target Assignment, Sequencing and Path Finding were
recently combined in different ways [5], [6], [13]–[18]. Most
of them either consider target assignment only (without the
need for computing visiting orders of targets) [13]–[15], or
consider the visiting order only given that each agent is pre-
allocated a set of targets [16]–[18]. Our prior work [5], [6]

seeks to handle the challenge in target assignment and ordering
and the collision avoidance in MAPF simultaneously. These
work uses the MCPF-sum formulation and the developed
planners minimize the sum of individual arrival times, while
this paper investigates MCPF-max. We do not extend our
prior method CBSS [6] for MCPF-sum to MCPF-max, because
CBSS requires solving a min-sum K-best sequencing problem,
and it is not obvious how to handle the min-max variant of
this K-best sequencing problem.

III. PROBLEM

Let the index set I = {1, 2, . . . , N} denote a set of N
agents. All agents share a workspace that is represented as an
undirected graph GW = (V W , EW , cW ), where W stands for
workspace. Each vertex v ∈ V W represents a possible location
of an agent. Each edge e = (u, v) ∈ EW ⊆ V W × V W

represents an action that moves an agent between u and v.
cW : EW → (0,∞) maps an edge to its positive cost value.
In this paper, the cost of an edge is equal to its traversal time,
and each edge has a unit cost.1

Let the superscript i ∈ I over a variable denote the specific
agent to which the variable belongs (e.g. vi ∈ V W means a
vertex corresponding to agent i). Let vio, v

i
d ∈ V W denote the

initial (or original) vertex and the goal (or destination) vertex
of agent i respectively. Let Vo, Vd ⊂ V W denote the set of
all initial and goal vertices of the agents respectively, and let
Vt ⊂ V W \{Vo ∪ Vd} denote the set of target vertices. For
each target v ∈ Vt, let fA(v) ⊆ I denote the subset of agents
that are eligible to visit v; these sets are used to formulate the
(agent-target) assignment constraints.2

Let πi(vi1, v
i
ℓ) denote a path for agent i between ver-

tices vi1 and viℓ, which is a list of vertices (vi1, v
i
2, . . . , v

i
ℓ)

in GW with (vik, v
i
k+1) ∈ EW , k = 1, 2, · · · , ℓ − 1. Let

g(πi(vi1, v
i
ℓ)) denote the cost of the path, which is the sum

of the costs of all edges present in the path: g(πi(vi1, v
i
ℓ)) =

Σj=1,2,...,ℓ−1c
W (vij , v

i
j+1).

All agents share a global clock and start to move along
their paths from time t = 0. Each action of the agents, either
wait or move along an edge, requires one unit of time. Any
two agents i, j ∈ I are in conflict if one of the following
two cases happens. The first case is a vertex conflict (i, j, v, t)
where two agents i, j ∈ I occupy the same vertex v at the
same time t. The second case is an edge conflict (i, j, e, t),
where two agents i, j ∈ I go through the same edge e from
opposite directions between times t and t+ 1.

Definition 1 (MCPF-max Problem): The MCPF with Min-
Max Objective (MCPF-max) seeks to find a set of conflict-free
paths for the agents such that (1) each target v ∈ Vt is visited at

1Here, the edge cost is the same as the edge traversal time, which is one
unit for each edge. When the traversal time of edges are not unitary, it leads
to continuous-time MAPF, and we refer the reader to [19], [20].

2An agent i “visits” a target v ∈ Vt means (i) there exists a time t such that
agent i occupies v along its path, and (ii) the agent i claims that v is visited.
If a target v is in the middle of the path of i and i does not claim v is visited,
then v is not considered as visited. A visited target v can appear in the path
of another agent. When we say an agent or a path “visits” a target, we always
mean the agent “visits and claims” the target. The assignment constraints do
not forbid any agent j /∈ fA(v) to use v in its path, and only forbid agent j
to claim visiting v.
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Fig. 2. An illustration of DMS* and related concepts. (a) shows the workspace graph GW . (b) shows the target graph GT where each edge in GT

corresponds to a minimum cost path in GW between the respective vertices. (c) shows the workflow of DMS* in Alg. 1. (d) shows DMS* first ignores any
agent-agent conflict and solves a corresponding mHPP, which provides a joint sequence γ(lo) (d1). This joint sequence γ(lo) can be converted to a joint path
π(lo) (d2,d3), whose corresponding makespan fmax is 9. (e) The joint path π(lo) leads to a policy ϕγ(lo) that maps a joint vertex to the next joint vertex
along π(lo). Since conflicts are ignored in this policy, agents may run into conflict (e2). When a conflict is detected, the subset of agents that are in conflict
IC(l) is back propagated to the ancestor labels. (f) After the back propagation, these ancestor labels and re-opened and re-expanded while considering all
possible actions of all agents in conflict (f1,f2,f3). During the re-expansion, for each of the successors, DMS* first uses a fast-to-compute yet roughly estimated
cost-to-go as the heuristic of the generated labels to avoid solving a mHPP. For both labels (f2) and (f3), this rough heuristic is (9, 5) − (1, 1) = (8, 4),
where (9, 5) is the heuristic of (f1), the parent of (f2) and (f3), and (1, 1) means each agent can move at most one step towards their goals. When either (f2)
or (f3) is popped from OPEN and before being expanded, DMS* re-computes a new heuristic and checks if the popped label should be expanded or re-added
to OPEN for future expansion. To obtain this new heuristic, DMS* first attempts to let the agents follow the previously computed target sequences of the
parent label and check if this worsens the makespan. For the successor shown in (f2), the resulting makespan is 9 (f4), which is no worse than the previous
makespan 9, and DMS* will not call mHPP solver to save computational effort. For the successor shown in (f3), the resulting makespan is 10 (f5), which is
worse than the previous makespan 9, and DMS* have to call mHPP solver to find a new joint sequence from that successor (f3) to the goals. Finally, with
the joint sequence, new policy for the successors can be built and the search continues as in (e).

least once by some agent in fA(v), (2) the path for each agent
i ∈ I starts at its initial vertex and terminates at a unique goal
vertex vid ∈ Vd such that i ∈ fA(v

i
d), and (3) the maximum

of the cost of all agents’ paths (i.e., maxi∈I g(π
i(vio, v

i
d)))

reaches the minimum.

IV. METHOD

This section begins with an example in Fig. 2 to illustrate
the planning process of DMS*. Then, Sec. IV-A introduces
some concepts that will be used during the search process,
before the presentation of the search algorithm in Sec. IV-B.

A. Concepts and Notations

1) Joint Graph: Let GW = (VW , EW) =
GW ×GW × · · · ×GW︸ ︷︷ ︸

N times

denote the joint graph of the

agents which is the Cartesian product of N copies of
GW , where each v ∈ VW represents a joint vertex and
e ∈ EW represents a joint edge that connects a pair of
joint vertices. Let vo = (v1o , v

2
o , · · · , vNo ) denote the initial

joint vertex, which contains the initial vertices of all the
agents. Let π(u, v), u, v ∈ VW denote a joint path, which

is a tuple of N (individual) paths of the same length, i.e.,
π(u, v) = (π1(u1, v1), · · · , πN (uN , vN )). A joint path π can
be viewed as a list of joint vertices (v0, v1, · · · , vℓ), and the
time for the agents to arrive at each joint vertex v ∈ π is
specified by the index of v in π. Given two subsequent joint
vertices u, v along a joint path π, let CheckConflict(u, v)
denote a procedure that checks for vertex conflicts at u, v
and edge conflicts during the transition from u to v among
all pairs of agents, and CheckConflict returns a set IC ⊆ I
of agents that are in conflict. We use a “path” to denote an
“individual path”. DMS* searches the joint graph GW for a
joint path that solves the MCPF-max.

2) Binary Vector: For any v ∈ VW , there can be multiple
joint paths, e.g. π1(vo, v), π2(vo, v), from vo to v with different
sets of targets visited, and we need to differentiate between
them. First, without losing generality, let all targets in Vt be
arranged as an ordered list Vt = {um,m = 1, 2, · · · ,M},
where subscript m indicates the index of a target in this list.3

3In this paper, for a vector related to targets (e.g. a binary vector a⃗ of
length M ), we use subscripts (e.g. am) to indicate the elements in the vector.
For a vector or joint vertex that is related to agents (e.g. g⃗ of length N , or
v ∈ VW ), we use a superscript (e.g. i in gi, vi) to indicate the element in
the vector or joint vertex corresponding to an agent.
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Let a⃗ ∈ {0, 1}M denote a binary vector of length M that
indicates the visiting status of all targets in Vt by a joint path
during the search, where the m-th component of a⃗ is denoted
as am, and am = 1 if um is visited, and am = 0 otherwise.

3) Label: Let l = (v, a⃗, g⃗) denote a label, where v is a joint
vertex, a⃗ is a binary vector of length M , and g⃗ is a cost vector
of length N . Here, each component gi, i ∈ I is the path cost
of agent i. During the search, each label l identifies a joint
path from vo to v that visits a subset of targets as described
by a⃗ and with path cost g⃗. Given l, let v(l), a⃗(l), g⃗(l) denote
the corresponding component in l, and let vi(l) denote the
vertex of agent i in v(l), i ∈ I . Let gmax(l) := maxi∈I g⃗(l)
denote the maximum path cost over all agents in g⃗(l). To solve
the MCPF-max in Def. 1, the planner searches for a label l,
whose corresponding joint path leads all agents to visit all
targets and eventually reaches the goals, and gmax(l) is the
objective value to be minimized.

4) Label Comparison: To compare two labels at the same
joint vertex, we compare both a⃗ and g⃗.

Definition 2 (Binary Dominance): For any two binary vec-
tors a⃗ and b⃗, a⃗ dominates b⃗ (⃗a ⪰b b⃗), if both the following
conditions hold: (i) ∀m ∈ {1, 2, · · · ,M}, am ≥ bm; (ii)
∃m ∈ {1, 2, · · · ,M}, am > bm.
Intuitively, a⃗ ⪰b b⃗ if a⃗ visits all targets that are visited in
b⃗, and a⃗ visits at least one more target than b⃗. Two binary
vectors are equal to each other (⃗a = b⃗) if both vectors are
component-wise same to each other.

Definition 3 (Label Dominance): For two labels l1, l2 with
v(l1) = v(l2), l1 dominates l2 (l1 ⪰l l2) if either (i) a⃗(l1) ⪰b

a⃗(l2), gmax(l1) ≤ gmax(l2); or (ii) a⃗(l1) = a⃗(l2), gmax(l1) <
gmax(l2) holds.
Intuitively, if l1 ⪰l l2, then the joint path identified by l1 is
guaranteed to be better than the joint path identified by l2.
If l1 does not dominate l2, l2 is then non-dominated by l1.
Any two labels are non-dominated (with respect to each other)
if each of them is non-dominated by the other. Two labels
are said to be equal to (or same to) each other (notationally
l1 = l2) if v(l1) = v(l2), a(l1) = a(l2), gmax(l1) = gmax(l2).
There is no need to compare g⃗(l1) and g⃗(l2) when comparing
labels l1, l2 since the problem in Sec. III seeks to minimize
the maximum path cost over the agents. Finally, for each joint
vertex v ∈ VW , let F(v) denote a set of labels that are non-
dominated to each other during the search.

5) Target Sequencing: Let γi = {vio, u1, u2, · · · , uk, v
i
d}

denote an (individual) target sequence, where each uj , j =
1, 2, · · · , k is a target vertex (i.e., uj ∈ Vt). Let γ =
{γ1, γ2, · · · , γN} denote a joint sequence, which specify
the assignment and visiting order of all targets for all
agents. Given l, a⃗(l) specifies the set of targets that are
visited and unvisited. We introduce the notation γ(l) =
{γ1(l), γ2(l), · · · , γN (l)}, a joint sequence based on l in the
sense that γ(l) visits all unvisited targets in a⃗(l): (i) each
γi(l) ∈ γ(l) starts with vi(l) (vi(l) is not necessarily an origin
vertex), visits a set of unvisited targets {um} (where the m-th
component of a⃗(l) is zero), and ends with a goal vertex vid;
(ii) all γi(l), i ∈ I together visits all unvisited targets in a⃗(l).
Intuitively, γ(l) is a joint sequence that is meant to complete
the joint path represented by l.

6) Target Graph: Let π∗(u, v), u, v ∈ GW denote a
minimum-cost path between u, v in GW , and let cπ∗(u, v)
denote the cost of path π∗(u, v). The cost of a target se-
quence c(γi(l)) is equal to the sum of cπ∗(u, v) for any
two adjacent vertices u, v in γi(l). Given l, to find γ(l), a
corresponding min-max multi-agent Hamiltonian path problem
(mHPP) needs to be solved as follows. First, a target graph
GT = (V T , ET , cT ) is created based on GW . The V T

includes the current vertices of agents v(l), the unvisited
targets {um ∈ Vt|am(l) = 0} and goals Vd. GT is fully
connected and ET = V T × V T . The edge cost in GT of any
pair of u, v ∈ V T is denoted as cT (u, v), which is the cost of
a minimum cost path π∗(u, v) in the GW . An example GT

is shown in Fig. 2(b). A target sequence γi(l) for an agent
i is a path in GT , and a γ(l) is a set of paths that starts
from v(l), visits all unvisited targets in Vt as in a⃗(l), and
ends at goals Vd, while satisfying the assignment constraints.
The procedure SolveMHPP(l) can be implemented by various
existing algorithms for mHPP.

7) Heuristic and Policy: Given γ(l), let hi(l) := c(γi(l))
be a heuristic value. The vector h⃗ := {hi(l)|i ∈ I} estimates
the cost-to-go for each agent i ∈ I . When SolveMHPP (l)
solves the mHPP to optimality, since conflicts are ignored
along the target sequences, the corresponding h⃗ provides lower
bounds of the cost-to-go for all agents, which is an admissible
heuristic for the search. For any label l, let f⃗(l) := g⃗(l)+ h⃗(l)
be the f -vector of l, which is an estimated cost vector of the
entire joint path from vo to goals for all agents by further
extending the joint path represented by l. Let fmax(l) :=
maxi∈I(f

i(l)) denote the maximum element in f⃗(l), which
provides an estimate of the objective value related to l.

Given l and γ(l), a joint policy ϕγ(l) is built out of γ(l),
mapping one label to another as follows. First, a joint path
π is built based on γ(l) by replacing any two subsequent
vertices u, v ∈ γi(l), i ∈ I with a corresponding mini-
mum cost path π∗(u, v) in GW . Then, along this joint path
π = (v0, v1, v2, · · · , vℓ), all agents move from vk to vk+1,
k = 0, 1, · · · , ℓ − 1. The corresponding binary vectors a⃗k
for each vk ∈ π are built by first making a⃗0 = a⃗(l), and
then updating a⃗k, k = 1, 2, · · · , ℓ based on a⃗k−1 and vk by
checking if vk visits any new targets. The corresponding cost
vectors g⃗k are computed similarly as ak by starting from
g⃗0 = g⃗(l). As a result, a joint policy ϕγ(l) is built by mapping
one label l = (v, a⃗, g⃗) to the next label l′ = (v′, a⃗′, g⃗′) along
the target sequence γ(l). For a vertex vi, let ϕi

γ(l)(v
i) denote

the next vertex of agent i in the joint policy ϕγ(l). An example
of ϕi

γ(l) is shown in Fig. 2(d). A label l is on-policy if its next
label is known in ϕγ(l′). Otherwise, l is off-policy, i.e., the
next label is unknown and a mHPP needs to be solved for l
to find the policy ϕγ(l). Let γ(l), h⃗(l), ϕγ(l) ←SolveMHPP (l)
denote the process of computing the joint sequence, heuristic
values and joint policy.

B. DMS* Algorithm

To initialize (Lines 1-3), DMS* creates an initial label lo
and calls SolveMHPP to compute γ(lo), h⃗(lo), ϕγ(lo) for lo.
For each label l, DMS* uses two f -values: ftemp(l) and
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Algorithm 1 Pseudocode for DMS*
1: lo ← (vo, a⃗ = 0M , g⃗ = 0N )
2: parent(lo)← NULL, ftemp(lo)← 0
3: add lo to OPEN with ftemp(lo) as the priority
4: add lo to F(vo)
5: while OPEN is not empty do
6: l = (v, a⃗, g⃗)← OPEN.pop()
7: TargetSeq(parent(l), l, IC(parent(l)))
8: fmax(l)← maxi∈I{g⃗(l) + w · h⃗(l)}
9: if fmax(l) > ftemp(l) then

10: ftemp(l)← fmax(l)
11: add l to OPEN with ftemp(l) as the priority
12: continue
13: if CheckSuccess(l) then
14: return Reconstruct(l)
15: Lsucc ← GetSuccessors(l)
16: for all l′ ∈ Lsucc do
17: IC(l

′)← CheckConflict(v(l), v(l′))
18: BackProp(l, IC(l′))
19: if IC ̸= ∅ continue then
20: if IsDominated (l′) then
21: DomBackProp(l, l′)
22: continue
23: ftemp(l

′)← maxi∈I{g⃗(l′) + w · SimpleHeu(l′)}
24: parent(l′)← l
25: add l′ to F(v(l′)) and back set(l′)
26: add l′ OPEN with ftemp(l

′) as the priority
27: return Failure (no solution)

Algorithm 2 Pseudocode for TargetSeq(l, l′, IC(l))
1: if l′ is on-policy then
2: γ(l′)← γ(l), return
3: γ(l′)← γ(l)
4: Compute ϕγ(l′) and h⃗(l′) based on γ(l′)
5: if ∃i ∈ IC(l), g

i(l′) + hi(l′) > fmax(l
′) then

6: γ(l′), h⃗(l′), ϕγ(l′) ← SolveMHPP(l′)
7: return

Algorithm 3 Pseudocode for BackProp(l, IC(l′))
1: if IC(l′) ⊈ IC(l) then
2: IC(l)← IC(l

′)
⋃

IC(l)
3: if l /∈ OPEN then add l to OPEN
4: for all l′′ ∈ back set(l) do
5: BackProp(l′′, IC(l))

Algorithm 4 Pseudocode for DomBackProp(l, l′)
1: for all l′′ ∈ F(v(l′)) do
2: if l′′ ⪰l l

′ or l′′ = l′ then
3: BackProp(l, IC(l′′))
4: add l to back set(l′′)

fmax(l), where ftemp(l) is a fast-to-compute yet roughly
estimated cost-to-go, which does not require computing any
joint sequence from l to the goals; and fmax(l) is an estimated
cost-to-go based on a joint sequence, which is computationally
more expensive to obtain than ftemp(l). Similarly to A* [21],
let OPEN denote a priority queue storing labels and prioritiz-
ing labels based on their f -values from the minimum to the
maximum. In Alg. 1, we point out which f -value (either ftemp

or fmax) is used when a label is added to OPEN. Finally, lo is
added to F(vo) since lo is non-dominated by any other labels

at vo, and lo is added to OPEN for future search.
In each iteration (Lines 5-26), DMS* pops a label l from

OPEN. DMS* calls TargetSeq for l, which takes the parent
label of l (denoted as parent(l)), l itself, and the conflict set
of parent(l). TargetSeq either calls SolveMHPP to find a joint
sequence γ(l), or re-uses the joint sequence γ(parent(l)) that
is previously computed for parent(l). We elaborate TargetSeq
in Sec. IV-C. After TargetSeq, h⃗(l) may change since a joint
sequence may be computed for l within TargetSeq, DMS*
thus computes fmax(l) and compare it against ftemp(l). When
computing fmax out of g⃗ and h⃗ on Line 8, a heuristic inflation
factor w ∈ [1,∞) is used, which scales each component
in h⃗ by the factor w. Heuristic inflation is common for
A* [22] and M*-based algorithms [7] that can often expedite
the computation in practice while providing a w-bounded sub-
optimal solution [22]. If fmax(l) > ftemp(l), then l should not
be expanded in the current iteration since there can be labels
in OPEN that have smaller f -value than fmax(l). DMS* thus
updates ftemp(l) to be fmax(l), re-adds l to OPEN with the
updated ftemp(l), and ends the iteration. In a future iteration,
when this label l is popped again, the condition on Line 9 will
not hold since ftemp(l) = fmax(l), and l will be expanded.

Afterwards, DMS* checks if l leads to a solution using
CheckSuccess(l), which verifies if every component in a⃗(l)
is one and if every component of v(l) is a unique goal
vertex while satisfying the assignment constraints. If Check-
Success(l) returns true, a solution joint path π∗ is found and
can be reconstructed by iterative tracking the parent pointers
of labels from l to lo in Reconstruct(l). DMS* then terminates.
If CheckSuccess(l) returns false, l is expanded by considering
its limited neighbors [7] described as follows. The limited
neighbors of l is a set of successor labels of l. For each i ∈ I ,
if i /∈ IC(l), agent i is only allowed to move to its next vertex
ϕi
γ(l)(v

i(l)) as defined in the joint policy ϕγ(l). If i ∈ IC(l),
agent i is allowed to visit any adjacent vertex of vi(l) in GW .
The successor vertices of vi(l) are:

ui ←

{
ϕi
γ(l)(v

i(l)) if i /∈ IC(l)

ui | (vi(l), ui) ∈ EW if i ∈ IC(l)
(1)

Let V i
succ denote the set of successor vertices of vi(l), which

is either of size one or equal to the number of edges incident
on vi(l) in GW . The successor joint vertices Vsucc of v(l)
is then the combination of vi(l) for all i ∈ I , i.e., Vsucc :=
V 1
succ × V 2

succ × · · · × V N
succ. For each joint vertex v′ ∈ Vsucc,

a corresponding l′ is created and added to Lsucc, the set of
successor labels of l. When creating l′, the corresponding
g⃗(l′) and a⃗(l′) are computed based on g⃗(l) a⃗(l) and v′. In
other words, the element in g⃗(l′) is one unit larger than the
corresponding element in g⃗(l) (unless the agent has reached
the goal and stays there) since every agents takes an action,
and the element in a⃗(l′) changes its value from 0 to 1, if v′

visits any targets that are unvisited as in a(l).
After generating the successor labels Lsucc of l, for each

l′ ∈ Lsucc, DMS* checks for conflicts between agents during
the transition from v(l) to v(l′), and store the subset of agents
in conflict in the conflict set IC(l

′). DMS* then invokes
BackProp (Alg. 3) to back propagate IC(l

′) to its ancestor
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labels recursively so that the conflict set of these ancestor
labels are modified, and labels with modified conflict set are
re-added to OPEN and will be re-expanded. DMS* maintains
a back set(l) for each l, which is a set of pointers pointing to
the predecessor labels to which the back propagation should be
conducted. Intuitively, similarly to [5], [7], the conflict set of
labels are dynamically enlarged during planning when agents
are detected in conflict. The conflict sets of labels determine
the sub-graph within the joint graph GW that can be reached by
DMS*, and DMS* always attempts to limit the search within
a sub-graph of GW as small as possible.

Afterwards, if IC(l
′) ̸= ∅, l′ leads to a conflict and is

discarded. Otherwise, l′ is checked for pruning by using
dominance (Def. 3) against any existing labels in F(v(l′)). If
l′ is pruned, any future joint path from l′ can be cut and paste
to l′′ ∈ F(v(l′)) that dominates l′ without worsening the cost
to reach the goals. Furthermore, for each l′′ ∈ F(v(l′)) that
dominates or is equal to l′, DomBackProp(Alg. 4) is invoked
so that the conflict set IC(l′) is back propagated to l, and l
is added to the back set of l′′. By doing so, DMS* is able
to keep updating the conflict set of the predecessor labels of
l′ after l′ is pruned. This ensures the predecessor labels of l′

will also be re-expanded after l′ is pruned. If l′ is not pruned,
SimpleHeu is invoked for l′ to compute a heuristic, which can
be implemented by first copying h⃗(l), where l is the parent of
l′, and then reduce each component of the copied vector by one
except for the components that are already zero. This heuristic
is an underestimate of the cost-to-go since all agents can move
at most one step closer to their goals in each expansion. Then,
ftemp(l

′) is computed and l′ is added to OPEN with ftemp(l
′)

as its priority. Other related data structure including F(v(l′)),
back set, parent are also updated correspondingly, and the
iteration ends.

When DMS* terminates, it either finds a conflict-free joint
path, or returns failure when OPEN is empty if the given
instance is unsolvable.

C. Deferred Target Sequencing

DMS* introduces two techniques to defer the target se-
quencing until needed. As aforementioned, the first one uses
a fast-to-compute yet roughly estimated cost-to-go as the
heuristic when a label is generated, and invokes TargetSeq
only when that label is popped from OPEN for expansion.

We now focus on the second technique in DMS*. In the
previous MS* [5], every time when the search encounters a
new label l that is off-policy, inside TargetSeq, SolveMHPP is
invoked for l to find a joint sequence and policy from l, which
burdens the overall computation, especially when a lot of new
labels are generated due to the agent-agent conflict. Different
from MS*, DMS* seeks to defer the call of SolveMHPP inside
TargetSeq. For a label l′, DMS* attempts to avoid calling
SolveMHPP for l′ by re-using the joint sequence γ(l) of its
parent label l (l is the parent of l′). As presented in Alg. 2,
on Lines 3-4, DMS* first attemps to build a policy from l′

by following the joint sequence of its parent label γ(l) and
computes the corresponding cost-to-go h⃗(l′). Agents i /∈ IC(l)
are still along their individual paths as in the previously

computed policy ϕγ(l). Agents i ∈ IC(l) consider all actions
as in Equation (1) and may deviate from the individual paths
specified by the previously computed policy ϕγ(l). Therefore,
DMS* needs to go through a check for these agents i ∈ IC(l):
DMS* first computes the f -vector by summing up g⃗(l′) and
h⃗(l′). Then, if f i(l′) of some agent i ∈ IC(l) is no larger
than fmax(l), DMS* can avoid calling SolveMHPP, since
letting the agents follow γ(l) in the future will not worsen the
objective value, the makespan. Otherwise, there exists an agent
i ∈ IC(l), whose corresponding f i(l′) is greater than fmax(l),
and in this case, DMS* cannot avoid calling SolveMHPP since
there may exists another joint sequence from l′, which leads
to a solution joint path with better (smaller) objective value.

D. Properties of DMS*
This section discusses the solution optimality of DMS*

and more analysis can be found in [23]. DMS* only finds
an optimal solution for MCPF-max under the following two
assumptions: (A1) SolveMHPP returns an optimal joint se-
quence for the given mHPP instance. (A2) Line 5 in Alg. 1
never returned true during the search of DMS*.

Theorem 1: For a solvable instance, when assumptions A1
and A2 hold, DMS* returns an optimal solution joint path.

Proof 1: The proof follows the analysis in [5], [7]. The
policies in DMS* defines a sub-graph GWsub of the joint graph
GW . DMS* first expands labels in GWsub. If no conflict is
detected when following the policy, the resulting joint path
is conflict-free and optimal due to A1: With A1, hmax(l)
for any label l computed by SolveMHPP is an estimated
cost-to-go that is admissible, i.e., hmax(l) is no larger than
the true optimal cost-to-go. If conflicts are detected, DMS*
updates (i.e., enlarges) GWsub by growing the conflict set and
back propagating the conflict set. When A2 holds, the enlarged
GWsub still ensures that an optimal conflict-free joint path π∗ is
contained in the updated GWsub [5], [7]. DMS* systematically
search over GWsub and finds π∗ at termination.

We now explain why DMS* loses the optimality guarantee
if A2 is violated. In MCPF-max, all agents are “coupled” when
assigning the targets, since a target visited by one agent does
not need to be visited by any other agents. When one agent
changes its target sequence and visits a target that is previously
assigned to another agent, all agents may need to be re-planned
to ensure solution optimality. When Line 5 in Alg. 1 returns
true for label l′, SolveMHPP needs to be called for l′ and
SolveMHPP may return a new joint sequence γ′. In this new
sequence γ′, it is possible that agents within IC(l) visit targets
that are previously assigned to agents that are not in IC(l).
However, DMS* does not let i /∈ IC(l) to consider all possible
actions in Equation (1). An optimal solution joint path may
lie outside GWsub and DMS* thus loses the solution optimality
guarantee when A2 is violated. 4

Additionally, when A1 and A2 hold, DMS* can use the
conventional heuristic inflation technique [22] and provide

4To ensure solution optimality when A2 is violated, same as in [5], one
way is to back propagate the entire I = {1, 2, · · · , N} as the conflict set
when calling BackProp. This ensures DMS* considers all actions of all agents
when conflicts are detected. In practice, this is computationally burdensome
for large N .
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Fig. 3. The success rates and runtime of DMS* and MS* (baseline) with
varying number of agents and targets in a random 32x32 map. DMS* has
higher success rates and less runtime on average than MS*.

bounded sub-optimal solution. Additionally, when A2 holds,
bounded sub-optimal joint sequences (e.g. by using an approx-
imation algorithm to solve the MHPP) lead to inflated heuristic
in DMS*, which leads to bounded sub-optimal solutions [22].

V. EXPERIMENTAL RESULTS

We implement DMS* in Python, with Google OR-Tool
as the mHPP solver. Limited by our knowledge on Google
OR-Tool, we only consider the following type of assignment
constraints, where any agent can visit all targets and goals. We
set up a 60-second runtime limit for each instance, where each
instance contains the starts, targets and goals in a grid map.
All tests run on a MacBook Pro with a Apple M2 Pro CPU
and 16GM RAM. It is known from [7], M*-based algorithms
with inflated heuristics can often scale to more agents, and
we set w = 1.1 in our tests. We set the number of targets
M = 20, 40, 60, 80. We compare DMS*, which includes the
two proposed technique to defer target sequencing, against two
baselines. The first one is MS*, which does not have these two
techniques. In other words, MS* here is a naive adaption of the
existing MS* [5] algorithm to solve MCPF-max, by using the
aforementioned Google OR-Tool to solve min-max mHPP for
target sequencing. The second baseline is a iterative greedy
approach which assigns one unvisited target to an agent to
minimize the makespan of all agents in the current iteration
while planning collision free paths.

A. Simulation Results

1) Varying Number of Agents: We first fix the map to Ran-
dom 32x32, and vary the number of agents N = 5, 10, 15, 20.

Fig. 4. The success rates and runtime of both DMS* and MS* (baseline)
with varying number of targets in maps of different sizes. DMS* achieves
higher success rates than MS* while requiring less runtime on average.

We measure the success rates, the average runtime to solution
and the average runtime for target sequencing per instance.
The averages are taken over all instances, including both
succeeded instances and instances where the algorithm times
out. As shown in Fig. 3, DMS* achieves higher success rates
and lower runtime than the baseline MS*. As M increases
from 20 to 80, both algorithms require more runtime for target
sequencing. As N increases from 5 to 20, agents have higher
density and are more likely to run into conflict with each
other. As a result, both algorithms time out for more instances.
Additionally, MS* spends almost all of its runtime in target
sequencing, which indicates the computational burden caused
by the frequent call of mHPP solver. In contrast, for DMS*,
when N = 5, 10, DMS* spends most of the runtime in target
sequencing, while as N increases to 15, 20, DMS* spends
more runtime in path planning.

2) Different Maps: We then fixed N = 10 and test in maps
of different sizes (Fig. 4). DMS* outperforms MS* in success
rates due to the alleviated computational burden for target
sequencing. Larger maps do not lead to lower success rates
since larger maps can reduce the density of the agents and
make the agents less likely to run into conflicts with each
other. The Room 32x32 map is more challenging than the
other two maps since there are many narrow corridors which
often lead to conflicts between the agents.

3) Solution Quality: We use the random 32x32 map and
fixed the number of agents to N = 5 where DMS* achieves
100% success rate. We compare the solution cost ratio of
DMS* over the greedy baseline. As shown in Table I, the
solution of DMS* is up to around 50% cheaper than the
solution of this greedy baseline.
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M min. CR median CR max.CR
20 0.47 0.71 0.94
40 0.46 0.63 0.86
60 0.53 0.66 0.76
80 0.56 0.72 0.87

TABLE I
COST RATIOS (CR) OF DMS* OVER A GREEDY BASELINE. SOLUTION

COSTS OF DMS* ARE UP TO 50% CHEAPER THAN THE GREEDY.

M 20 40 60 80
MS* 72.2 67.6 75.0 71.8
DMS* 77.2 84.4 93.4 99.9

TABLE II
THE AVERAGE NUMBER OF EXPANSION OF MS* AND DMS* AMONG THE

INSTANCES WHERE BOTH ALGORITHMS SUCCEED.

4) Number of Expansions: Table II shows the average
number of label expansion in both MS* and DMS* among the
instances in the Random 32x32 map which are successfully
solved by both algorithms within the runtime limit. Due to the
deferred sequencing, DMS* tends to search in a less informed
manner and needs more expansion.

B. Experiments with Mobile Robots

We test our method with two differential drive robots, which
are shown in the multi-media attachment. This test verifies that
the paths planned by DMS* are executable on real robots.
When the robots have large motion disturbance, such as delay
or deviation from the planned path, additional techniques (such
as [24]) will be needed to ensure collision-free execution of
the paths.

VI. CONCLUSION AND FUTURE WORK

This paper investigates a min-max variant of Multi-Agent
Combinatorial Path Finding problem and develops DMS*
algorithm to solve this problem. We test DMS* with up to 20
agents and 80 targets and conduct simple robot experiments
to showcase the usage of DMS*.

For future work, one can investigate extending DMS* to the
case where edges have non-unitary traversal times [19], [20],
or simultaneously optimizing both the maximum and the sum
of individual arrival times [25]. We note from our experiments
the disturbance in robot motion may affect the execution of
the planned path, and one can develop fast online replanning
version of DMS* to handle the disturbance.
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