
Heuristic Search for the Orienteering Problem with Time-Varying Reward

Chao Cao1, Jinyun Xu1, Ji Zhang1, Howie Choset1, Zhongqiang Ren2

1 Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA
2 Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China

{ccao1, jinyunx, zhangji, choset}@andrew.cmu.edu, zhongqiang.ren@sjtu.edu.cn

Abstract

The Orienteering Problem (OP) seeks a path on a graph to
maximize total rewards collected subject to a path length bud-
get. Typically, a reward is achieved by visiting a vertex in
the graph, and such a reward is constant for all time. This
paper considers a variant of OP where the reward of each
vertex is an arbitrary time-dependent function, and hence the
name time-varying reward OP (TR-OP). To solve this prob-
lem, we develop a novel heuristic search algorithm called
Reward Maximization A* (RMA*), which is guaranteed to
find an optimal solution to TR-OP. We also develop a fast
method to compute an admissible heuristic for RMA* that
can effectively direct the search to save computational effort.
Furthermore, we introduce a hyper-parameter in RMA* that
trades off between solution quality and runtime efficiency for
RMA*. We benchmark RMA* against a recent dynamic pro-
gramming (DP) approach, which runs fast in practice, but has
no guarantee of the solution optimality. In our tests, RMA*
reduces the runtime by up to 70% compared to DP. By ad-
justing the hyper-parameter, RMA* is able to find solutions
with up to 30% more rewards than those found by DP.

Introduction
In a graph where each vertex has an associated reward
value, expressed as a real number, the Orienteering Problem
(OP) (Tsiligirides 1984) seeks to find a path for an agent
that maximizes the total rewards collected along the path,
while adhering to constraints on path length or travel time.
This paper considers a generalized version of OP, namely
Time-varying Reward OP (TR-OP), where the reward at
each vertex is a known function that changes over time.
TR-OP arises in applications such as logistics (Aringhieri
et al. 2022), surveillance (Yu, Schwager, and Rus 2016), and
transportation system (Martins et al. 2021). Consider an ex-
ample (Fig. 1) where unmanned aerial vehicles (UAVs) are
tasked to monitor traffic in a large city (Yu, Schwager, and
Rus 2016). These robots have limited flying time due to the
battery capacity. Meanwhile, traffic events, such as conges-
tion, are time-varying, and the goal is to plan a best tour
for the UAV so that the maximum amount of information
can be collected per flight. Similar scenarios arise when au-
tonomous marine vehicles are deployed to collect samples

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A motivating example of TR-OP, where a UAV
plans a route to maximize the information collected in a traf-
fic monitoring task in a large city.

to monitor water pollution events such as oil spills subject to
limited travel and time budgets.

OP is an NP-hard problem (Golden, Levy, and Vohra
1987) and so is TR-OP. The challenge in TR-OP lies in de-
termining which subset of vertices to visit within the time
budget, the order of these visits, and the timing of arrival,
i.e., arrival time, at each vertex. TR-OP has been previously
addressed by a dynamic programming (DP) approach (Ma
et al. 2017), where a state space defined over both vertices
and time steps is first constructed, and dynamic program-
ming is then applied over this state space to greedily max-
imize the reward collected along a path from the starting
vertex to any other vertex-time pair. This DP approach is not
guaranteed to return an optimal solution but has been shown
to run fast and provide near-optimal solution in practice.

This paper develops a new heuristic search approach
called Reward Maximization A* (RMA*). RMA* solves a
reward maximization problem and is guaranteed to find an
optimal solution to TR-OP, i.e., a path with the maximum re-
ward subject to the path length constraint. We also develop
a fast method as part of RMA* to compute an admissible

heuristic that can effectively direct the search to save compu-
tational effort. Furthermore, we introduce a hyper-parameter
in RMA* that tunes the searching behavior of RMA*, trad-
ing off solution quality for runtime efficiency. We show that
the existing DP approach (Ma et al. 2017) is a special case
of RMA* by fixing this hyper-parameter to 1.

In comparison with this DP approach (Ma et al. 2017),
RMA* gains runtime efficiency due to the following rea-
sons. First, it avoids the explicit construction of the state
space over vertices and times, which is often a huge space
and can be time-consuming to explicitly construct. Second,
the search process of RMA* is guided by a heuristic, which
allows RMA* to explore only a fraction of the state space
that leads to a solution. Third, RMA* introduces a domi-
nance pruning rule to eliminate partial solutions that cannot
lead to an optimal solution during the search. We compare
RMA* against the DP approach using both a public dataset
on New York taxi routing and a synthetic dataset with ran-
domly generated graphs. Our experimental results show that
RMA* can reduce the runtime by up to 70% compared to
the DP approach. By adjusting the hyper-parameter, RMA*
is able to find solutions with up to 30% more rewards than
those found by the DP approach.

Related Work
The Orienteering Problem (OP), initially introduced by
(Tsiligirides 1984) has been extensively studied over the
past few decades. Fundamentally, OP involves finding a sin-
gle route to maximize total rewards by visiting a subset of
vertices on a graph, adhering to a path-length limit. Practi-
cally, OP has wide applications ranging from planning opti-
mal sightseeing tours in tourism (Gavalas et al. 2015) to en-
hancing delivery routes in supply chain logistics (Aringhieri
et al. 2022).

Conventionally, research on OP and its variations has
focused on a static model, where travel costs and reward
collection are time-independent, as highlighted in several
surveys (Vansteenwegen, Souffriau, and Van Oudheusden
2011; Gunawan, Lau, and Vansteenwegen 2016; Vansteen-
wegen and Gunawan 2019). Recently, some time-dependent
variants of OP have been explored, particularly those ac-
counting for variable travel costs between locations, mirror-
ing fluctuating real-world traffic scenarios (Li et al. 2010;
Gunawan, Yuan, and Lau 2014). In these studies, the travel
cost between two locations typically depends on the time
when the trip starts.

Studies incorporating time-varying rewards are relatively
rare. These typically assume specific time-dependent reward
variations at each location. Erkut and Zhang pioneered an
OP variant featuring linearly decreasing vertex rewards, us-
ing a branch-and-bound algorithm and a greedy heuristic
(Erkut and Zhang 1996). This concept was later expanded
to include multiple agents, employing a clustering-based
heuristics algorithm (Ekici and Retharekar 2013) and evo-
lutionary local search methods (Afsar and Labadie 2013).
Tang et al. introduced a piecewise-linear relationship be-
tween vertex reward and agent arrival time, and approached
the problem using tabu search (Tang, Miller-Hooks, and
Tomastik 2007). In a different vein, Erdogan and Laporte,

along with Pietz and Royset, explored scenarios where re-
wards increase during an agent’s stay at a location, i.e., ser-
vice time (Pietz and Royset 2013; Yu et al. 2019). Yu et al.
further extended this to rewards both decrease over arrival
time and increase over service time (Yu et al. 2022).

The study most closely related to ours is the one con-
ducted by Ma et al, where they consider arbitrary time-
dependent rewards (Ma et al. 2017). They discretize time
into a finite number of time intervals, and construct a spatial-
temporal graph that encapsulates all possible transitions be-
tween locations over different time intervals. Given the uni-
directional nature of time, this graph forms a directed acyclic
graph (DAG). They then employ a dynamic programming
approach to identify the path that accumulates the most
rewards, essentially finding the “longest” path within the
DAG. Empirical results show that this DP approach can pro-
duce near-optimal solutions with relatively short computa-
tion time. In the rest of this paper, we reference this method
as DP for ease of discussion.

Finally, the proposed RMA* algorithm is related to multi-
objective heuristic search (Hernández et al. 2023; Ren
et al. 2022b) and heuristic search for maximization prob-
lems (Stern et al. 2014; Cohen, Stern, and Felner 2020),
which is discussed after RMA* is presented.

Problem Statement
Let G = (V,E) denote a finite directed graph, where
each vertex v ∈ V represents a static target location in
the workspace to be visited by the agent, and each edge
e ∈ E denote the transition from one vertex to another.
There is a global clock, and time is discretized into steps,
i.e., t ∈ T = {0, 1, 2, · · · , tmax}, where tmax is a finite
time budget for the agent to move.

For each t ∈ T and each vertex v ∈ V , there is a corre-
sponding real number r(v, t) ∈ R (either positive or nega-
tive), which represents the time-varying reward that is col-
lected by the agent if the agent visits v at time t. Each edge
(u, v) ∈ E is associated with a constant positive real num-
ber d(u, v) ∈ R+, which represents the amount of time (i.e.,
duration) for the agent to travel from u to v.1 The agent is
allowed to wait at a vertex v ∈ V for an arbitrary num-
ber of time steps {t1, t1 + 1, t1 + 2, · · · , t2}, where the
agent collects all rewards associated with those time steps
{t1, t1 + 1, t1 + 2, · · · , t2}. Once the agent leaves a vertex
v, the agent is not allowed to visit v again in its future path.2

The agent starts to move from its starting ver-
tex vo ∈ V at time t = 0. Let π(vℓ, tℓ) =
{(vo, 0), (v1, t1), (v2, t2), · · · , (vℓ, tℓ)} denote a path of the
agent from its depot vo through vertices v1, v2, · · · , vℓ,
while reaching these vertices at times t1, t2 · · · , tℓ respec-

1If d(u, v) = 0, then u, v are at the same location in the
workspace and u, v can be combined as a single vertex w with
r(w, t) = r(u, t) + r(v, t). We therefore only consider the case
where d(u, v) > 0.

2We follow the convention in the literature (Vansteenwe-
gen, Souffriau, and Van Oudheusden 2011; Gunawan, Lau, and
Vansteenwegen 2016; Vansteenwegen and Gunawan 2019) where
the agent can visit each vertex at most once.

tively. We refer to π(vℓ, tℓ) simply as π when there is no am-
biguity. Let r(π) denote the sum of rewards collected by the
agent along the path π, i.e., r(π) :=

∑
k=1,2,...,ℓ r(vk, tk).

Let Vd ⊆ V denote a set of destination vertices where the
agent is allowed to end its path. When Vd = V , it means the
agent can stop at any vertex when t = tmax.
Definition 1 (TR-OP). The Time-Varying Rewards Orien-
teering Problem (TR-OP) seeks to find a path π(vℓ, tℓ) that
starts from vo at time t = 0 and ends at a vertex vℓ ∈ Vd

at some time tℓ ≤ tmax, while maximizing the total reward
r(π(vℓ, tℓ)) collected by the agent along the path.

Method
Concepts and Notations
Let l = (v, t, g, A) denote a label that is a tuple of a ver-
tex v ∈ V , a real number g, a time t and a set of ver-
tices A ⊆ V . Intuitively, each label l identifies a path of
the agent that reaches v at time t with accumulated re-
ward g (i.e., reward-to-come) while visiting the set of ver-
tices A along the path. To simplify the presentation, let
v(l), g(l), t(l), A(l) denote the respective component of la-
bel l. The components t(l), g(l), A(l) together capture the
history information of a path that reaches vertex v(l), which
are necessary for the search. In other words, two labels l1, l2
that reach the same vertex v = v(l1) = v(l2) are different,
if any one of their t, g, A components is different.

Let h(l) denote the heuristic value (h-value) of label l.
Here, h(l) is an estimate of the reward that the agent can pos-
sibly collect in the future (i.e., reward-to-go) by further ex-
tending the path represented by l. A heuristic is said to be ad-
missible if it is an upper bound of the true maximum reward
that the agent can possibly collect. Let f(l) := g(l) + h(l)
denote the f -value of label l, which is an estimate of the total
reward that the agent can collect from the start to the goal via
label l. Let OPEN denote a priority queue, where labels l are
prioritized based on their keys, which are defined as tuples
(f(l), t(l)) in lexicographic order as follows. For any two
labels l1 and l2, the label with a larger f -value gets higher
priority and is popped from OPEN earlier during the search.
If f(l1) = f(l2), then t(l1) and t(l2) are considered, and the
label with a smaller t gets higher priority and is popped from
OPEN earlier.

To compare labels, we introduce the following notion of
label dominance.
Definition 2 (Label Dominance). Given two labels l1, l2
with the same vertex (i.e., v(l1) = v(l2)) and the same
time (i.e., t(l1) = t(l2)), we say l1 dominates l2, if (i)
g(l1) ≥ g(l2) and (ii) A(l1) ⊆ A(l2).

If l1 dominates l2, then we also say l2 is dominated by
l1. If l1 does not dominate l2 and l2 does not dominate l1,
then l1, l2 are non-dominated by each other. Labels are only
comparable if they have the same vertex and the same time.
During the search, there can be multiple non-dominated la-
bels that reach the same v at the same time t, which need
to be tracked when searching for an optimal solution. Let
F(v, t), v ∈ V, t ∈ T denote the front set at vertex v at time
t, which is a set of labels, where each label is non-dominated
by any other label in this set.

Algorithm 1: Pseudocode for RMA*

1: lo ← (v = vo, g = 0, t = 0, A = ∅), parent(lo)← null
2: h(lo)← GetHeuValue(lo), f(lo)← g(lo) + h(lo)
3: Add lo to OPEN
4: F(v, t)← ∅,∀v ∈ V, ∀t ∈ T
5: ld ← null
6: while OPEN ̸= ∅ do
7: extract l from OPEN
8: if IsPruned(l) then
9: continue

10: FilterAndAddFront(l)
11: if (ld = null or g(l) > g(ld)) and (v(l) ∈ Vd) then
12: ld ← l
13: U ← GetSuccessors(l)
14: for v′ ∈ U do
15: if v′ = v(l) then ▷ Wait in place
16: t′ ← t(l) + 1, g′ ← g(l) + r(v′, t′), A′ ← A(l)
17: else ▷ Move to another vertex
18: t′ ← t(l) + d(v(l), v′), g′ ← g(l) + r(v′, t′),

A′ ← A(l) ∪ {v′}
19: l′ ← (v′, g′, t′, A′)
20: h(l′)← GetHeuValue(l′), f(l′)← g(l′) + h(l′)
21: if IsPruned(l′) then
22: continue
23: else
24: parent(l′)← l
25: add l′ to OPEN
26: return Reconstruct(ld)

Algorithm Description
RMA* (Alg. 1) is a search algorithm that is guided by an ad-
missible heuristic. To initialize the search, RMA* first cre-
ates an initial label lo ← (v = vo, g = 0, t = 0, A = ∅),
computes its f -value and adds lo to OPEN. Furthermore,
F(v, t),∀v ∈ V, t ∈ T is initialized to be an empty set, and
ld is initialized to be an empty pointer, which will be used
to store a label with the maximum g-value at any time dur-
ing the search. In other words, ld represents an incumbent
solution path with the largest g-value during the search.

In each search iteration (Line 6-25), a label with the high-
est priority is first extracted from OPEN for processing.
Then, procedure IsPruned (Alg. 3) checks if l should be
discarded based on (i) whether f(l) is smaller than the in-
cumbent solution g(ld), (ii) whether l can still reach a des-
tination vertex within the time budget, or (iii) whether l is
dominated by any existing labels that have reached v(l). If
either condition among (i) (ii) or (iii) is true, then l cannot
lead to an optimal solution and is thus pruned. The current
search iteration ends. If l is not pruned, l is then added to
F(v(l), t(l)) in procedure FilterAndAddFront, where any
existing label in F(v(l), t(l)) is removed if it is dominated
by l. Note that FilterAndAddFront differs from IsPruned as
FilterAndAddFront seeks to remove the existing labels in
F(v, t) and IsPruned seeks to remove l.

If l reached a destination vertex in Vd (Line 11), RMA*
checks if the incumbent solution should be updated. If l has
higher reward than the previous incumbent solution or there
is no incumbent solution yet (i.e., ld = null), l then becomes
the incumbent solution and is assigned to be ld.

Algorithm 2: Pseudocode for IsPruned(l)
1: if f(l) ≤ g(ld) then
2: return true
3: if tmax − t(l) > minu∈Vd d(v(l), u) then
4: return true
5: for l′ ∈ F(v(l), t(l)) do
6: if A(l′) ⊆ A(l) and g(l′) ≥ g(l) then
7: return true
8: return false

Algorithm 3: Pseudocode for FilterAndAddFront(l)

1: for l′ ∈ F(v(l), t(l)) do
2: if A(l) ⊆ A(l′) and g(l) ≥ g(l′) then
3: remove l′ from F(v(l), t(l))
4: add l to F(v(l), t(l))

Afterwards, label l is expanded as follows. A set of suc-
cessor labels of l is created. These successors are created
by either extending the path represented by l to all adjacent
vertices of v(l) in G, or let the agent wait at v(l) for one
time unit. For each of these successors l′, the corresponding
h(l′) and f(l′) are computed (as elaborated in the Heuristic
Computation section). Then, l′ is checked for pruning using
IsPruned, which is the same procedure as aforementioned.
Finally, l′ is added to OPEN if it is not pruned.

At the end of the search, all labels l′ in OPEN are pruned
due to the incumbent solution ld (since f(l) ≤ g(ld)) and
OPEN depletes. Then RMA* terminates and the path repre-
sented by ld is reconstructed by iteratively following the par-
ent points within procedure Reconstruct. The resulting path
is guaranteed to have the maximum accumulative reward. If
ld is null, Reconstruct returns an empty path which means
the given problem instance is unsolvable.

Heuristic Computation
We introduce a pre-processing procedure, which is con-
ducted before Alg. 1 in order to pre-compute a table H that
can be looked up when computing the heuristic value for a
label l. The key of this table H is (v, t),∀v ∈ V,∀t ∈ T , and
the value is maxτ=t+1,t+2,··· ,tmax r(v, τ), the maximum re-
ward at vertex v for any future time step greater than t. De-
note H(v, t) to be the value in this table.

For any label l, we compute its heuristic as follows.

h(l) := (tmax − t(l)) max
u/∈A(l)

H(u, t(l)) (1)

This heuristic is an upper bound of the maximum reward-
to-go in the future and thus admissible.
Lemma 1 (Admissible Heuristic). The heuristic in Equa-
tion (1) is admissible.

To compute the table H , for each vertex, we only need
to iterate backwards from tmax down to 0 in order to
find maxτ=t+1,t+2,··· ,tmax

r(v, τ) via dynamic program-
ming, since H(v, t) = max{H(v, t + 1), r(v, t + 1)}. The
entire table takes O(|V ||T |) time to compute. During the
search, to evaluate Equation (1) for a label l, it takes at most
O(|V |) time to find the maximum H(u, t) for any u /∈ A(l).

Remark 1. The computation of h(l) for any label l in Equa-
tion (1) depends on the time t(l) and the history, i.e., the
vertices that are visited by l, which is stored in A(l). Here,
we avoid defining the consistency of a heuristic, which is not
required by RMA*.

Truncated Frontier Set
RMA* can be modified to balance between the runtime effi-
ciency and solution quality. The F(v, t) for any v ∈ V, t ∈
T can be a large set, since any two labels l, l′ can repre-
sent paths with different subset of vertices A(l), A(l′) vis-
ited, and neither of A(l), A(l′) is a subset of the other. As
a result, many labels are non-dominated during the search
and need to be expanded. Since the goal of the problem is
to maximize the reward, we therefore propose using a trun-
cated frontier set FK(v, t) to replace F(v, t), which stores
the top K labels that have the largest g-values during the
search and ignores the set of vertices visited by the label.
This variant of RMA* does not guarantee returning an op-
timal solution at termination, however, in practice, the re-
turned solution is often near optimal.

Remark 2. When using truncated frontier set FK(v, t) with
K = 1, RMA* becomes a greedy approach that always
stores the label with the best g-value during the search and
there is only one label in each FK(v, t). This greedy ap-
proach RMA* (K = 1) produces equivalent results to the
existing dynamic programming approach in DP. However,
RMA* (K = 1) is more computationally efficient as it tends
to explore a smaller state space compared to DP, due to the
heuristic guided search. We compare the differences between
different RMA* variants and DP in the Experiments section.

Discussion
This section elaborates on a few design choices behind
Alg. 1 and its relationship to other heuristic search tech-
niques. First, the existing research in longest simple path
problem (Cohen, Stern, and Felner 2020) suggested that
depth-first methods (such as depth-first branch-and-bound)
often run fast for maximization problems (Stern et al.
2014). Here, we choose to first investigate a best-first search
method, since it is hard to obtain an accurate heuristic
for estimating the reward-to-go, and an inaccurate heuristic
can lead the depth-first search to inefficiently explore many
branches.

Second, the check for pruning on Line 8 is needed for
the following reason. The frontier set F(v, t) stores only ex-
panded labels, and resembles the “closed” set in A*. The
check on Line 21 does not compare a newly generated label
against other existing labels in OPEN. A label l in OPEN
may be dominated by another label l′ generated and added to
OPEN later. In this case, l′ will be selected first from OPEN
for expansion. When l is then selected from OPEN, it will be
pruned by Line 8 and thus will not be expanded. This design
choice is similar to the idea of “lazy check” in bi-objective
A* (Hernández et al. 2023).

Third, the label dominance in Def. 2 only compares la-
bels at the same time t(l1) = t(l2) and can not be modified
to t(l1) ≤ t(l2), since the reward r(v, t) can be negative,

and arriving earlier is not always better. When assuming
the reward is always positive, the dominance can consider
t(l1) ≤ t(l2). When the time-varying reward has a piece-
wise pattern (Tang, Miller-Hooks, and Tomastik 2007), the
notion of safe-interval can be potentially used (Phillips and
Likhachev 2011) in combination with dominance (Ren et al.
2022a) to expedite the search.

Finally, the widely adopted relaxation of traveling sales-
man problems such as minimum spanning trees can not be
readily adapted here to provide heuristics, since it is hard
to estimate which subset of vertices will be visited within
the time limit. We therefore use a simple yet fast-running
heuristic to guide the search.

Analysis
Intuitively, RMA* enumerates all possible paths (repre-
sented by labels) from vo to any other vertex in an intelli-
gent way by using the heuristic to guide the search, while
attempting to prune the labels that can not lead to an opti-
mal solution. At termination, all reachable labels are either
pruned or kept as the incumbent solution ld, which is an op-
timal solution.

Lemma 2. For an unsolvable instance, RMA* terminates in
finite time and returns failure.

Proof. The graph G is finite and the time budget tmax is
finite. Therefore, there is a finite number of possible paths
from vo to any other vertex within the time budget, and there
is a finite number of labels to be generated during the search.
For any label l, RMA* never generates another label l′ that
is the same as l (l′ = l), since such a l′ will be pruned due
to IsPruned(l’). Therefore, for unsolvable instances, RMA*
terminates in finite time after generating and expanding a
finite number of labels, and returns failure.

Lemma 3. Labels that are pruned due to the IsPruned pro-
cedure cannot lead to either a feasible solution or an optimal
solution if one exists.

Proof. IsPruned(l’) only removes successor labels l′ that (i)
cannot reach any goal vertex within the time budget (Line 3
in Alg. 3) or (ii) leads to a path with less reward than an ex-
isting path (Line 1 and Line 6 in Alg. 3). Here, for Line 1 in
Alg. 3, the correctness of the pruning relies on the admissi-
bility of the heuristic (Lemma 1). For case (i), the successor
label l′ cannot lead to a feasible solution path for the prob-
lem and can thus be pruned. For case (ii), an existing better
path (than the path represented by l′) is already found and
the successor label l′ can be pruned.

Theorem 1 (Completeness). RMA* terminates in finite time
by either returning a solution path if the instance is solvable,
or returning failure if the instance is unsolvable.

Proof. With Lemma 2, RMA* terminates in finite time and
returns failure if the instance is unsolvable. If the instance is
solvable, then RMA* considers all possible labels that may
lead to a solution and keeps the labels with higher rewards
(Lemma 3). There is only a finite number of possible labels

to be generated during the search. RMA* terminates in finite
time and returns a feasible solution.

Theorem 2 (Solution Optimality). For a solvable instance,
the path returned by RMA* is an optimal solution.

Proof. For a solvable instance, with Lemma 3, the search
considers all possible labels and prunes labels that cannot
lead to an optimal solution. RMA* always selects a label
l with the maximum f -value in OPEN for expansion, and
stores the label with the maximum reward during the search
as the incumbent solution ld. When the search terminates,
OPEN is empty and all labels in OPEN are discarded due to
IsPruned, and ld is an optimal solution.

Experiments
We conducted numerical evaluations to validate the compu-
tational efficiency and effectiveness of RMA*. In these tests,
our algorithm was benchmarked against the DP approach in
(Ma et al. 2017). As pointed out in (Ma et al. 2017), the
DP approach has significant superiority over classic OP al-
gorithms, notably the “center-of-gravity” heuristic (Golden,
Levy, and Vohra 1987) when dealing with time-varying re-
wards. For this reason, our comparison focused solely on
DP. Both RMA* and DP were implemented in C++ for a
fair comparison. The experiments were conducted on a lap-
top with an Intel i7 3.6Ghz processor and 32 GB of RAM.

To verify the computational efficiency and solution qual-
ity of RMA*, we employed two types of experiments. The
first utilized a public dataset on city-like road networks,
specifically recorded New York Taxi Data, to test the algo-
rithm in a practical, real-life scenario. The second experi-
ment involved a simulated environment, using a randomly
generated graph where vertices are assigned with randomly
generated time-varying rewards. Both experiments allowed
us to evaluate RMA* under both real and controlled condi-
tions, demonstrating its computational efficiency and effec-
tiveness in solving TR-OP.

Taxi Routing in New York City
Similarly to (Ma et al. 2017), this experiment leverages the
taxi trip records of for-hire vehicles in New York City, cov-
ering the period from January to June 2023 (NYC Taxi and
Limousine Commission 2023).3 This dataset segments New
York City into 260 distinct taxi zones, as illustrated in Fig-
ure 2. In this experiment, we focus solely on the pick-up
locations of all trips, following the conventions in (Ma et al.
2017).

We address the taxi routing challenge as a TR-OP. In our
model, each taxi zone within the city is represented as a ver-
tex in a graph, defined by its geographical coordinates. To
determine travel costs between these taxi zones, we calculate
the geodesic distance between their centroids. This distance
is then used to estimate travel time between zones, assuming
an average taxi speed of 15 kilometers per hour in New York
City (New York City Department of Transportation 2023).

3Only seven months’ data of 2023 was available
during our experiments. The dataset is available at:
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Figure 2: NYC taxi zones overlaid on a geographic map.
Colors denote the zone IDs from 1 to 260.

Figure 3: Passenger pick-up call volume (rewards) in June
2023 at key locations: Newark Airport (1), East Village,
Manhattan (79), Inwood Hill Park, Manhattan (128), Kew
Gardens, Queens (135), and Williamsburg (North Side),
Brooklyn (255).

To effectively manage time in our model, we segment
each day into 30-minute intervals, resulting in 48 distinct
time periods per day. The potential reward from a taxi zone
during a specific interval is measured by the volume of taxi
calls recorded in that period. We assume that higher taxi call
volumes indicate increased opportunities for revenue, mak-
ing call volume an appropriate metric for rewards in our op-
timization process.

Figure 3 shows the average taxi call volumes through-
out the day for June 2023, focusing on five key locations:
Newark Airport, Inwood Hill Park, East Village, Kew Gar-
dens Hills, and Williamsburg. This figure illustrates the dy-
namic and fluctuating nature of demand, and how the de-
mand shifts over time and across different locations. Under-
standing these shifts in demand is crucial for the optimiza-
tion of taxi routing decisions, as it allows for better align-
ment of taxi availability with passenger needs.

We evaluate the computational runtime of our method
against the DP approach, using the New York taxi data.

Figure 4: Average computational runtime for both our
method and the DP method on the New York Taxi Dataset.
The DP method involves two steps: graph building and
searching. Notably, the graph-building step demands a sig-
nificantly longer processing time.

Specifically, we adjust the Truncated Frontier Set size to
1 (K = 1), as detailed in the Truncated Frontier Set sec-
tion, ensuring that our method yields solutions equivalent to
those of DP. Both methods were tested using seven months
of data, with the starting taxi zone varying from 1 to 260.
We measure the computational runtime in two dimensions:
physical time and the number of iterations required. Here,
we define an iteration in our method as the expansion of
a node within the state space (i.e., when RMA* reaches
Line 13 in Alg. 1), and in the DP approach, as the number
of times where the parent pointer of a vertex in the DAG is
updated.

The result shows that our method outperforms the DP
approach significantly in terms of computation speed, be-
ing 71.44% faster as illustrated in Figure 4. Despite the
fast searching speed of DP, the construction of an explicit
spatial-temporal graph demands a considerable amount of
time. As highlighted in Table 1, while both methods collect
the same rewards with similar iteration counts, our method
consistently demonstrates shorter computational runtime
compared to DP. Note that the iteration counts of DP solely
depends on the number of graph vertices and time intervals.
DP has the same iteration counts for all months except for
March. This is due to the absence of data from one location,
the Newark Airport (location 1), which results in 259 graph
vertices instead of 260 as in other months. An exemplary
route for June 2023 is visualized in Figure 5. In the visu-
alization, the time dimension is represented perpendicularly
to the 2D plane, and the taxi call volumes are color-coded
across different time intervals.

Reward Maximization on Random Graphs
We evaluated the effectiveness of our method using a dataset
consisting of randomly generated graphs with time-varying
rewards. Each instance in the dataset contains a fully con-
nected graph with 50 vertices. These vertices are randomly

Runtime (ms) Iteration
Month Average Reward Our DP Our DP

Jan 388961.98 2549.35± 21.05 8687.60± 11.24 12145.82± 3.19 12221.00± 0.00
Feb 367748.68 2493.13± 18.45 8707.62± 23.84 12104.38± 5.07 12221.00± 0.00
Mar 434418.21 2432.12± 19.00 8618.12± 8.58 12040.83± 10.07 12174.00± 0.00
Apr 418235.92 2465.41± 21.17 8708.82± 20.15 12094.35± 10.04 12221.00± 0.00
May 466301.60 2479.23± 20.82 8710.00± 8.44 12088.82± 11.89 12221.00± 0.00
Jun 434847.82 2456.12± 21.99 8708.34± 19.95 12084.17± 9.48 12221.00± 0.00
Jul 413033.79 2534.25± 20.54 8709.01± 12.22 12137.50± 7.30 12221.00± 0.00

Table 1: Comparison of computational runtime and iteration count between our method and the DP method on the New York
Taxi Dataset. Both methods achieve the same rewards in all runs. Our method exhibits lower computational runtime compared
to DP, albeit having a similar iteration count.

Figure 5: Sample results of running our method on the New
York City taxi dataset: all taxi zones are mapped onto the
XY plane, with time intervals extending along the Z axis.
The computed path, starting at location 1 and finishing at lo-
cation 136, is shown as the purple line. Additionally, rewards
associated with locations along the path are visualized and
color-coded.

positioned on a two-dimensional plane, confined within
a defined area that spans from the coordinates [0, 0] to
[100, 100]. The rewards for each vertex span over 100 time
intervals. Values of the rewards were determined by com-
posing three Gaussian distributions, with randomly gener-
ated mean ranging from [1, 100] and variance ranging from
[1, 10]. Each Gaussian distribution is also randomly scaled
(in the range of [1, 500]) to diversify the level of rewards
across time intervals and vertices. Figure 6 shows the ran-
domly generated rewards of a few vertices over 100 time
steps.

We compared our method against DP across 1000 in-
stances. We vary the hyper-parameter K in our method in
the set of {1, 2, 4, 6, 8, 10,∞} to demonstrate the effect of
the hyper-parameter on both the solution quality and com-
putational runtime. Note that when K = ∞, our method

Figure 6: The time-varying rewards of five vertices in a ran-
domly generated graph.

Figure 7: Superior count and reward improvement percent-
age increase as K increases from 1 to ∞. Superior count
refers to the number of instances where our method collects
more rewards than DP.

produces optimal solutions. Figure 7 shows the effect of dif-
ferent K values on the solution quality. In the figure, as
the K increases, the number of instances where our method
finds solutions with higher rewards than DP, namely, supe-
rior count, increases. In addition, the average improvement
percentage over the DP method increases as well, as shown
by the yellow dotted line. In particular, when K = ∞, our
method collects 30% more rewards on average in 255 out of
1000 instances. Figure 8 presents the number of cases where
our method, with K =∞, achieves higher rewards, and the
average improvement percentage in these cases. For exam-
ple, Figure 8 shows that in 25 cases, our method achieves
5% higher rewards compared to the baseline method.

Method Runtime (ms) Iteration
Baseline DP 267.42± 2.23 2501.09± 434.66

With Heuristic

RMA* (K = 1) 102.53± 31.95 2584.52± 683.82
RMA* (K = 2) 180.03± 59.76 4671.72± 1273.08
RMA* (K = 4) 311.64± 115.66 8020.12± 2335.19
RMA* (K = 6) 422.50± 171.94 10671.63± 3362.29
RMA* (K = 8) 520.68± 228.31 12866.93± 4287.84
RMA* (K = 10) 603.94± 283.55 14703.86± 5160.77
RMA* (K =∞) 5600.69± 12400.22 35908.61± 27269.25

Without Heuristic

RMA* (K = 1) 118.38± 35.86 2995.02± 728.36
RMA* (K = 2) 213.51± 66.83 5543.98± 1366.60
RMA* (K = 4) 385.36± 135.06 9844.73± 2510.77
RMA* (K = 6) 542.17± 206.23 13489.66± 3557.30
RMA* (K = 8) 684.99± 280.62 16653.62± 4627.16
RMA* (K = 10) 821.48± 359.95 19435.54± 5718.59
RMA* (K =∞) 46586.03± 286675.07 73901.12± 74615.48

Table 2: Comparison of computational runtime between the DP method and our method using different frontier set sizes (K).

Node Number Superior Count Improvement
10 8 12.7123%
30 15 6.1760%
50 25 6.3043%
70 33 7.9023%
100 40 5.2333%

Table 3: Experiments on random graphs with different node
numbers. As the node number increases, our method finds
higher rewards in more instances.

Table 2 presents the average runtime and iteration counts
for the DP method and our method with different K values.
Additionally, we report the runtime and iteration counts of
our method running without the heuristic. In this scenario,
the heuristic value h(l) of all state-space nodes, which esti-
mates the potential rewards that can be collected in the re-
maining time, is set to a large constant. As shown in Table
2, the absence of heuristic guidance leads to a significantly
higher expansion of nodes compared to when a heuristic is
used, which highlights the efficacy of our proposed heuris-
tic.

We also evaluate our method against DP on random
graphs with different node numbers, ranging from 10 to 100
nodes. The results are presented in Table 3. We run 100 tri-
als for each method for each graph size and calculate the
superior counts and reward improvement. As shown in the
table, as the node number increases, there are more instances
where the path computed by our method collects higher re-
wards.

Conclusion and Future Work
This paper presents a method to solve the Orienteering Prob-
lem with Time-varying rewards (TR-OP). The method uses a
heuristic-guided search to explore the state space, which can
produce an optimal solution to TR-OP. In addition, a hyper-
parameter is introduced in the method to balance the trade-
off between solution quality and computational runtime. We

Figure 8: Percentage of solution quality improvement v.s.
number of instances.

provide completeness and optimality proof of our method. In
experiments, we evaluate our method against a dynamic pro-
gramming (DP) approach using two datasets: a real-world
New York Taxi Dataset and a synthetic dataset featuring ran-
domly generated graphs. Our method reduces the runtime by
70% compared to DP. By adjusting the hyper-parameter, our
method achieves up to 30% higher rewards than DP solu-
tions.

We plan to extend the method to a multi-agent scenario
in the future, where multiple agents are set to collect the
maximum rewards on a graph, subject to each agent’s travel
budget. One can also develop new heuristics, and investigate
fast dominance checking techniques, as in multi-objective
search (Ren et al. 2022b; Hernández et al. 2023), for TR-OP
to speed up the search.

References
Afsar, H. M.; and Labadie, N. 2013. Team orienteering prob-
lem with decreasing profits. Electronic Notes in Discrete
Mathematics, 41: 285–293.
Aringhieri, R.; Bigharaz, S.; Duma, D.; and Guastalla, A.
2022. Novel applications of the team orienteering problem

in health care logistics. In Optimization in Artificial Intelli-
gence and Data Sciences: ODS, Rome, Italy, September 14-
17, 2021, 235–245. Springer.

Cohen, Y.; Stern, R.; and Felner, A. 2020. Solving the
longest simple path problem with heuristic search. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 75–79.

Ekici, A.; and Retharekar, A. 2013. Multiple agents max-
imum collection problem with time dependent rewards.
Computers & Industrial Engineering, 64(4): 1009–1018.

Erkut, E.; and Zhang, J. 1996. The maximum collection
problem with time-dependent rewards. Naval Research Lo-
gistics (NRL), 43(5): 749–763.

Gavalas, D.; Konstantopoulos, C.; Mastakas, K.; Pantziou,
G.; and Vathis, N. 2015. Heuristics for the time dependent
team orienteering problem: Application to tourist route plan-
ning. Computers & Operations Research, 62: 36–50.

Golden, B. L.; Levy, L.; and Vohra, R. 1987. The orien-
teering problem. Naval Research Logistics (NRL), 34(3):
307–318.

Gunawan, A.; Lau, H. C.; and Vansteenwegen, P. 2016. Ori-
enteering problem: A survey of recent variants, solution ap-
proaches and applications. European Journal of Operational
Research, 255(2): 315–332.

Gunawan, A.; Yuan, Z.; and Lau, H. C. 2014. A mathemat-
ical model and metaheuristics for time dependent orienteer-
ing problem. PATAT.

Hernández, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; Koenig, S.; and Salzman, O. 2023. Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial Intelligence, 314: 103807.

Li, J.; Wu, Q.; Li, X.; and Zhu, D. 2010. Study on the time-
dependent orienteering problem. In 2010 International Con-
ference on E-Product E-Service and E-Entertainment, 1–4.
IEEE.

Ma, Z.; Yin, K.; Liu, L.; and Sukhatme, G. S. 2017. A spatio-
temporal representation for the orienteering problem with
time-varying profits. In 2017 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 6785–
6792. IEEE.

Martins, L. d. C.; Tordecilla, R. D.; Castaneda, J.; Juan,
A. A.; and Faulin, J. 2021. Electric vehicle routing, arc
routing, and team orienteering problems in sustainable trans-
portation. Energies, 14(16): 5131.

New York City Department of Transportation. 2023. New
York City Mobility Report. https://www.nyc.gov/html/dot/
html/about/mobilityreport.shtml. Accessed: 2023-11-15.

NYC Taxi and Limousine Commission. 2023. TLC Trip
Record Data. https://www.nyc.gov/site/tlc/about/tlc-trip-
record-data.page. Accessed: 2023-11-15.

Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2011 IEEE in-
ternational conference on robotics and automation, 5628–
5635. IEEE.

Pietz, J.; and Royset, J. O. 2013. Generalized orienteering
problem with resource dependent rewards. Naval Research
Logistics (NRL), 60(4): 294–312.
Ren, Z.; Rathinam, S.; Likhachev, M.; and Choset, H. 2022a.
Multi-Objective Safe-Interval Path Planning With Dynamic
Obstacles. IEEE Robotics and Automation Letters, 7(3):
8154–8161.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022b. Enhanced multi-objective A* using balanced bi-
nary search trees. In Proceedings of the International Sym-
posium on Combinatorial Search, volume 15, 162–170.
Stern, R.; Kiesel, S.; Puzis, R.; Felner, A.; and Ruml, W.
2014. Max is more than min: Solving maximization prob-
lems with heuristic search. In Proceedings of the Interna-
tional Symposium on Combinatorial Search, volume 5, 148–
156.
Tang, H.; Miller-Hooks, E.; and Tomastik, R. 2007.
Scheduling technicians for planned maintenance of geo-
graphically distributed equipment. Transportation Research
Part E: Logistics and Transportation Review, 43(5): 591–
609.
Tsiligirides, T. 1984. Heuristic methods applied to orien-
teering. Journal of the Operational Research Society, 35:
797–809.
Vansteenwegen, P.; and Gunawan, A. 2019. Orienteering
problems. EURO Advanced Tutorials on Operational Re-
search.
Vansteenwegen, P.; Souffriau, W.; and Van Oudheusden, D.
2011. The orienteering problem: A survey. European Jour-
nal of Operational Research, 209(1): 1–10.
Yu, J.; Schwager, M.; and Rus, D. 2016. Correlated orien-
teering problem and its application to persistent monitoring
tasks. IEEE Transactions on Robotics, 32(5): 1106–1118.
Yu, Q.; Adulyasak, Y.; Rousseau, L.-M.; Zhu, N.; and Ma,
S. 2022. Team orienteering with time-varying profit. IN-
FORMS Journal on Computing, 34(1): 262–280.
Yu, Q.; Fang, K.; Zhu, N.; and Ma, S. 2019. A matheuristic
approach to the orienteering problem with service time de-
pendent profits. European Journal of Operational Research,
273(2): 488–503.

