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Abstract. The moving target traveling salesman problem with obsta-
cles (MT-TSP-O) is a generalization of the traveling salesman problem
(TSP) where, as its name suggests, the targets are moving. A solution
to the MT-TSP-O is a trajectory that visits each moving target during a
certain time window(s), and this trajectory avoids stationary obstacles.
We assume each target moves at a constant velocity during each of its
time windows. The agent has a speed limit, and this speed limit is no
smaller than any target’s speed. This paper presents the first complete
algorithm for finding feasible solutions to the MT-TSP-O. Our algorithm
builds a tree where the nodes are agent trajectories intercepting a unique
sequence of targets within a unique sequence of time windows. We gener-
ate each of a parent node’s children by extending the parent’s trajectory
to intercept one additional target, each child corresponding to a different
choice of target and time window. This extension consists of planning a
trajectory from the parent trajectory’s final point in space-time to a mov-
ing target. To solve this point-to-moving-target subproblem, we define a
novel generalization of a visibility graph called a moving target visibility
graph (MTVG). Our overall algorithm is called MTVG-TSP. To validate
MTVG-TSP, we test it on 570 instances with up to 30 targets. We imple-
ment a baseline method that samples trajectories of targets into points,
based on prior work on special cases of the MT-TSP-O. MTVG-TSP
finds feasible solutions in all cases where the baseline does, and when the
sum of the targets’ time window lengths enters a critical range, MTVG-
TSP finds a feasible solution with up to 38 times less computation time.

Keywords: Motion Planning · Traveling Salesman Problem · Combina-
torial Search

1 Introduction

Given a set of targets and the travel costs between every pair of targets, the
traveling salesman problem (TSP) seeks an order of targets for an agent to
visit that minimizes the agent’s total travel cost. In the moving target traveling
salesman problem (MT-TSP) [10], the targets are moving through free space, and
we seek not only an order of targets, but a trajectory for the agent intercepting
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each target. The agent’s trajectory is subject to a speed limit and must intercept
each target within a set of target-specific time intervals, called time windows. We
consider the case where travel cost between targets is equal to the travel time:
this cost is not fixed a priori, as in the TSP, and instead depends on the time at
which the agent intercepts each target. Prior work on the MT-TSP assumes that
the agent’s speed limit is no smaller than the speed of any target [10,18,19,26],
and we make the same assumption in our work. When there are moving targets
as well as obstacles for the agent to avoid, we refer to the problem as the moving
target traveling salesman problem with obstacles (MT-TSP-O), shown in Fig. 1.

Fig. 1. Targets move along trajectories with piecewise-constant velocities, which can
be intercepted by agent during time windows depicted in bold colored lines. Agent’s
trajectory shown in dark blue avoids obstacles, intercepts each target within its time
window, and returns to start location (depot).

Two properties we desire for an MT-TSP-O algorithm are completeness4
and optimality. No algorithm for the MT-TSP-O in the literature has either
of these properties. Guaranteeing completeness is complicated by the fact that
even the problem of finding a feasible solution is NP-complete, since the MT-
TSP-O generalizes the TSP with time windows (TSP-TW) [21]. In this paper,
we present the first complete algorithm for the MT-TSP-O.

Simpler cases of the MT-TSP-O have been addressed in the literature, with
completeness guarantees in some cases. For example, in the absence of obstacles,
[20] provides a complete and optimal solver for the MT-TSP assuming targets
move at constant velocities. [22] provides a complete and optimal method when
targets have piecewise-constant velocities. Heuristics are presented in [1,3,7,8,11,
17,18,25,26] for variants of the MT-TSP, only guaranteeing completeness in the

4 Completeness refers to an algorithm’s guarantee on finding a feasible solution when
a problem instance is feasible or reporting infeasible in finite time otherwise [2, 13].
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absence of time windows. In the presence of obstacles, there is one related work
[14] that considers the case where the agent is restricted to travel along a straight-
line path when moving from one target to the next, providing an incomplete
algorithm. A generic approach to solving these special cases of the MT-TSP-
O is to sample the trajectories of targets into points, find agent trajectories
between every pair of points, then select a sequence of points to visit by solving
a generalized traveling salesman problem (GTSP) [14, 19, 23]. This approach is
not complete, since it may only be possible for the agent to intercept some target
at a time that is in between two of the sampled points in time representing the
target’s trajectory.

We develop a new algorithm for the MT-TSP-O that guarantees complete-
ness. Our algorithm, called MTVG-TSP, leverages a novel generalization of a
visibility graph, which we call a moving target visibility graph (MTVG), which
enables us to plan a trajectory from a starting point in space-time to a moving
target. Given a sequence of time windows of targets, we can find a minimum-
time agent trajectory intercepting each target within its specified time window
via a sequence of A* searches, each on a MTVG. In particular, we can do so
without sampling any target’s trajectory, avoiding the limitations of prior work.
By performing a higher level search for a sequence of time windows and com-
puting an agent trajectory for each generated sequence, MTVG-TSP finds an
MT-TSP-O solution if one exists. We extensively test our algorithm on problem
instances with up to 30 targets, varying the length and number of time windows,
and we compare our algorithm’s computation time to a method based on prior
work [14,19,23] that samples trajectories of targets into points. We demonstrate
that when the sum of the time window lengths for each target enters a critical
range, the sampled-points method requires an excessive number of sample points
to find a feasible solution, while our method finds solutions relatively quickly.

2 Problem Setup

We consider a single agent and Nτ targets, all moving on a 2D plane (R2). The
trajectory of target i ∈ [Nτ ]

5 is denoted as τi : R+ → R2. Each target has a set
of Ni time windows {wi,1, wi,2, . . . , wi,Ni

}, where wi,j = [t0i,j , t
f
i,j ] is the jth time

window of target i. Target i moves at a constant velocity within each of its time
windows, but its velocity may be different for each time window. Given a final
time T f , denote the trajectory for the agent as τA : [0, T f ] → R2. τA must start
and end at a given point called the depot denoted as d with position pd ∈ R2.
The agent can move in any direction with a speed at most vmax.

Let {O1, O2, . . . ONO
} denote the set of obstacles where NO denotes the num-

ber of obstacles. We define Ψ(t0, tf ) as the set of all the feasible agent trajectories
defined on the time interval [t0, tf ] such that for any time t ∈ [t0, tf ], the agent
satisfies the speed constraint and its position never enters the interior of any
obstacle. We assume that within target i’s time windows, target i does not move
with speed greater than vmax and does not enter the interior of any obstacle.
5 For a positive integer x, [x] denotes the set {1, 2, · · · , x}.
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We say that a trajectory τA for the agent intercepts target i ∈ [Nτ ] if there
exists a time t such that for some j ∈ [Ni], t ∈ wi,j and τA(t) = τi(t). We define
the MT-TSP-O as the problem of finding a final time T f and an agent trajectory
τA ∈ Ψ(0, T f ) such that τA starts and ends at the depot, intercepts each target
i ∈ [Nτ ], and T f is minimized.

3 MTVG-TSP Algorithm

The MTVG-TSP algorithm interleaves a higher-level search on a time window
graph and a lower-level search on a moving target visibility graph (MTVG). The
nodes in the time window graph, called window-nodes, each represent either the
depot or a pairing of a target with one of its time windows. A feasible solution
to the MT-TSP-O corresponds to a cycle in the time window graph containing
the depot and exactly one window-node per target. Our algorithm finds such
a cycle by building a trajectory tree, where each tree-node contains a sequence
of window-nodes and an associated agent trajectory. A tree-node’s children are
each generated in two steps. First, we append a window-node to the end of
the tree-node’s window-node sequence. Then we extend the tree-node’s agent
trajectory to intercept the appended window-node’s target. We perform this
trajectory extension via the MTVG. In particular, we construct the MTVG by
augmenting a standard visibility graph with the window-node whose target we
aim to intercept. Extending a tree-node’s trajectory consists of planning a path
in the MTVG from the final point in the tree-node’s trajectory to the added
window-node. When we have a tree-node with a trajectory that intercepts all
targets and returns to the depot, we have a solution to the MT-TSP-O.

3.1 Window-Nodes

Since we will be constructing two novel graphs, the time window graph and the
moving target visibility graph, each containing a common type of node called a
window-node, we define window-nodes here. A window-node s = (i, t0i,j , t

f
i,j) is an

association of a target i with one of its time windows wi,j = [t0i,j , t
f
i,j ]. The set of

all window nodes is Vtw = {(0, 0,∞)} ∪
⋃

i∈[Nτ ]

⋃
j∈[Ni]

{(i, t0i,j , t
f
i,j)}. In addition to

having a window-node for every possible pair of target and time window, we have
a window-node sd = (0, 0,∞) for the depot. The depot is viewed as a fictitious
target 0 with τ0(t) = pd for all t. For each window-node s = (i, t0i,j , t

f
i,j), we

define the functions targ(s) = i, t0(s) = t0i,j , and tf (s) = tfi,j . We say an agent
trajectory τA intercepts s ∈ Vtw at time t ∈ [t0(s), tf (s)] if τA(t) = τtarg(s)(t).

3.2 Initial Visibility Computations

Next, we describe two initial data structures needed to construct the moving
target visibility graph. The first is a standard visibility graph Gvis = (Vvis, Evis)
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[16]. Let VO ⊆ R2 be the set of convex vertices of all the obstacles6. The set of
nodes Vvis in Gvis contains vertices in VO, the depot position, and the positions
of each target’s trajectory at the beginning and end of each of its time windows,
i.e. Vvis := VO ∪ {pd} ∪ {τtarg(s)(t0(s)) : s ∈ Vtw \ {sd}} ∪ {τtarg(s)(tf (s)) : s ∈
Vtw \ {sd}}. We draw an edge from q ∈ Vvis to q′ ∈ Vvis if q′ is contained in the
visibility polygon of q, denoted as vpoly(q) (computed using CGAL [24]).

The second data structure encodes visibility relationships between points in
space and window-nodes. In particular, for each q ∈ Vvis, s ∈ Vtw, we compute a
visible interval set vis(q, s), containing every interval I ⊆ [t0(s), tf (s)] such that
for all t ∈ I, we have τtarg(s)(t) ∈ vpoly(q). We illustrate vis(q, s) in Fig. 2 (a).
The set of all visible interval sets is Λvis = {vis(q, s) : ∀q ∈ Vvis, s ∈ Vtw}.

Fig. 2. (a) We compute vis(q, s) for all q ∈ VO and s ∈ Vtw. (b) In the moving
target visibility graph (MTVG) associated with p and s, we draw an edge from q to
s if vis(q, s) ̸= ∅. All edges between position-nodes are bidirectional, but edges from
position-nodes to s are unidirectional: there are no edges leaving s. The positions of
endpoints of edges on s are drawn arbitrarily, since the agent’s position after traversing
edge (q, s) depends on the time when the agent leaves q.

3.3 Moving Target Visibility Graph

A recurring subproblem in our algorithm is to find a trajectory from a point
(p, T ) in space-time that intercepts a particular window-node s in minimum
time. For each of these subproblems, we define a graph G̃vis = (Ṽvis, Ẽvis) called
a moving target visibility graph (MTVG). The set of nodes is Ṽvis = Vvis∪{p, s},
where nodes in Vvis∪{p} are called position-nodes, and s is the window-node we
aim to intercept. The set of edges is Ẽvis = Evis ∪Ep ∪Es. We construct Ep by

6 A convex obstacle vertex is is a vertex where the internal angle between the two
incident edges is less than π radians. Using only convex vertices in a visibility graph
reduces graph size without discarding shortest paths through the graph [15]
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drawing edges from p to all q ∈ Vvis such that q ∈ vpoly(p); if we already have
p ∈ Vvis, we can skip this step, since all possible edges from p to q ∈ Vvis already
exist in Evis. Constructing Es consists of two steps. First, we compute vis(p, s);
if p ∈ Vvis, we can skip this step, because we computed vis(p, s) in Section 3.2.
Second, we draw an edge to s from any position-node q, including p, such that
vis(q, s) ̸= ∅, as shown in Fig. 2 (b).

The cost of edge (u, v) ∈ Ẽvis depends on u, v, and a time variable t repre-
senting the time at which the agent departs from node u. We denote the cost
of (u, v) at time t as c̃vis(u, v, t). For edges between position-nodes u and v, the
time variable is not used: the edge cost is simply equal to the agent’s minimum
travel time from u to v: c̃vis(u, v, t) =

∥u−v∥2

vmax
∀t. For any edge es = (q, s) ∈ Es,

the time variable is used to compute the cost as follows:

c̃vis(q, s, t) = min
I∈vis(q,s)

SFT (q, t, s, I) (1)

where SFT stands for shortest feasible travel, as in [19]. "Shortest" refers to
shortest time. The SFT from point (q, t) to window-node s on interval I is the
optimal cost of optimization Problem 2:

SFT (q, t, s, I) = min
ts ∈ I

ts − t (2a)

s.t.
∥τtarg(s)(ts)− q∥

ts − t
≤ vmax (2b)

Problem 2 computes the minimum travel time of a straight-line trajectory start-
ing from (q, t) and intercepting s within interval I, and can be solved in closed-
form using methods from [19]. The SFT computation does not consider obstacle-
avoidance, but in our case, it does not need to: any straight-line trajectory from
q to s intercepting s within some I ∈ vis(q, s) is already obstacle-free.

After constructing G̃vis, we find a minimum-time trajectory from (p, T ) to s
via an A* search [9] from p to s on G̃vis, shown in Alg. 1. Since edge costs in
G̃vis encode travel time, the g-value g(v) for a node v is the shortest travel time
out of all paths to v that A* has explored so far. T + g(v) is then the earliest
known arrival time to node v. In Line 11, we use this arrival time to compute
edge costs from v to its successors. The heuristic h(q) for a position-node q is
the Euclidean distance from q to the spatial line segment defined by s, divided
by vmax, underestimating the travel time from q to s. We set h(s) = 0. When
A* finds a path to s, the ConstructTrajectory function (Line 19) performs a
standard backpointer traversal to obtain a path Q = (p, q1, . . . , qN−1, s) through
G̃vis, moves the agent at max speed between each position-node in Q, and finally
executes the straight-line trajectory associated with c̃vis(q

N−1, s, T + g(qN−1)).
The result is a minimum-time trajectory from (p, T ) to s, if one exists. If such
a trajectory does not exist, the condition gcand(v

′) ≤ tf (s) − T on Line 12 for
adding v′ to OPEN ensures the search terminates, described in Section 4.
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Algorithm 1: A* search from initial point (p, T ) to window-node s

1 Function PointToMovingTargetSearch(p, T, s,Gvis, Λvis):
2 G̃vis = (Ṽvis, Ẽvis) = ConstructMTVG (p, s,Gvis, Λvis);
3 OPEN = [];
4 CLOSED = [];
5 Insert p into OPEN with f(p) = 0;
6 Set g(v) = ∞ for all v ∈ Ṽvis with v ̸= p. Set g(p) = 0.
7 while OPEN is not empty and f(s) > min

v∈OPEN
f(v) do

8 Remove v with smallest f(v) from OPEN;
9 Insert v into CLOSED;

10 for v′ in v.successors() do
11 gcand(v

′) = g(v) + c̃vis(v, v
′, T + g(v));

12 if gcand(v
′) < g(v′) and v′ /∈ CLOSED and

gcand(v
′) ≤ tf (s)− T then

13 g(v′) = gcand(v
′);

14 Insert v′ into OPEN with f(v′) = g(v′) + h(v′);
15 end
16 end
17 end
18 if f(s) ̸= ∞ then
19 return ConstructTrajectory(s), g(s) + T , FEASIBLE;
20 end
21 return NULL, ∞, INFEASIBLE;

3.4 Time Window Graph

The MTVG defined in Section 3.3 enables finding a minimum-time trajectory in-
tercepting a single window-node. We will need to chain these trajectory computa-
tions together to intercept a sequence of window-nodes, containing one window-
node per target. To determine this sequence, we define a time window graph
denoted as Gtw = (Vtw, Etw). The set of nodes in Gtw is the set of all window
nodes Vtw from Section 3.1. We add an edge (u, v) to Etw if there exists an agent
trajectory that intercepts u at time tu and v at time tv with tu ≤ tv, satisfying
speed limit and obstacle avoidance constraints. In particular, we search for such
a trajectory that departs at the latest feasible departure time from u to v, de-
noted as LFDT (u, v). Extending the idea from [19], LFDT (u, v) is the optimal
cost of optimization Problem 3:

LFDT (u, v) = max
tu∈[t0(u),tf (u)],

τA

tu (3a)

s.t. τA ∈ Ψ(tu, t
f (v)), (3b)

τA(tu) = τtarg(u)(tu), (3c)

τA(t
f (v)) = τtarg(v)(t

f (v)). (3d)
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Remark 1. Constraint (3d) requires the agent to meet v at its end time tf (v),
raising the question of whether the agent could depart later from u if we relaxed
(3d) and only required the agent to meet v at some time tv ∈ [t0(v), tf (v)]. Since
we assumed τtarg(v) neither exceeds the agent’s maximum speed nor enters the
interior of an obstacle during targ(v)’s time window, this relaxation would not
let the agent depart later from u. If the agent can depart at time tu and meet
targ(v) at some time tv ∈ [t0(v), tf (v)], the agent can follow τtarg(v) from time
tv to time tf (v), thereby meeting v at time tf (v) as well.

Problem 3 seeks a trajectory that starts by intercepting a window-node and
terminates at a prescribed point. We transform Problem 3 via a time reversal
to instead seek a trajectory that starts at a prescribed point and terminates
by intercepting a window-node. We do so because the transformed problem
can be solved using Alg. 1. The transformation defines a fictitious node u =
(−targ(u),−tf (u),−t0(u)) associated with fictitious target targ(u) = −targ(u).
The trajectory of targ(u) is τ−targ(u)(t) = τtarg(u)(−t). Consider a reversed time
variable t = −t. An agent trajectory that departs as late as possible from u,
measured in conventional time t, arrives at u as early as possible, measured in
reversed time t. We find LFDT (u, v) by solving the transformed Problem 4:

LFDT (u, v) = − min
tu∈[tf (u),t0(u)],

τA

tu (4a)

s.t. τA ∈ Ψ(−tf (v), tu), (4b)
τA(tu) = τtarg(u)(tu), (4c)

τA(−tf (v)) = τtarg(v)(t
f (v)). (4d)

We solve Problem 4 using Alg. 1, and if we find a feasible solution, we draw an
edge from u to v in Gtw and store LFDT (u, v) with that edge.

3.5 Trajectory Tree

Any feasible agent trajectory τA for the MT-TSP-O must intercept each tar-
get during one of its time windows before returning to the depot. This means
that τA intercepts a sequence of window-nodes (s1, s2, . . . , sNτ ) containing ex-
actly one window-node per target, implying the existence of the cycle S =
(sd, s

1, s2, . . . , sNτ , sd) in Gtw. In this paper, we use the depth-first search (DFS)
in Alg. 2 to find a feasible trajectory and its corresponding cycle (if one exists).
While we apply DFS in this work to quickly find feasible solutions, other search
methods can be used as well, e.g. best-first search to find the global optimum.

Alg. 2 maintains a stack that stores tuples (S, τA, T ), where S is a path
(sequence of window-nodes) through Gtw, and (τA, T ) is a partial solution to
the MT-TSP-O, in that (τA, T ) starts at the depot, avoids obstacles, satisfies
the speed limit, and intercepts each window-node in S in order. As the search
proceeds, we construct a tree of these tuples, which we call a trajectory tree. We
refer to tuples (S, τA, T ) as tree-nodes. Each loop iteration begins by popping
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a tree-node (S, τA, T ) from the stack (Line 4), then iterating over the successor
window-nodes of (S, T ) (Line 6), where s′ ∈ Gtw is a successor window-node of
(S, T ) if and only if all of the following conditions hold:

1. (s, s′) ∈ Etw and T ≤ LFDT (s, s′), s being the terminal window-node of S.
2. targ(s′) ̸= targ(s) for any s in S.
3. If s′ = sd, then S contains one window-node per target.

Algorithm 2: Constructing a cycle through Gtw and a trajectory inter-
cepting each node in the cycle. See Alg. 1 for the PointToMovingTarget-
Search function. See Section 3.5 for details on the Lookahead function.
1 Function DFS(S,Gvis, Λvis):
2 STACK = [ (sd, NULL, 0) ];
3 while STACK is not empty do
4 (S, τA, T ) = STACK.pop();
5 SUCCESSORS = [];
6 for s′ in GetSuccessorWindowNodes(S, T ) do
7 τ̄ ′A, T ′, status = PointToMovingTargetSearch

(τA(T ), T, s′, Gvis, Λvis);
8 S′ = Append (S, s’);
9 if Lookahead (S′, T ′) is INFEASIBLE then

10 continue;
11 end
12 τ ′A = ConcatenateTrajectories (τA, τ̄ ′A);
13 if s′ is sd then
14 return τ ′A, T

′ FEASIBLE;
15 end
16 SUCCESSORS.append((S′, τ ′A, T

′));
17 end

// Add successors to stack in order of decreasing
final time

18 SUCCESSORS.sortLargestToSmallestT();
19 for (S′, τ ′A, T

′) in SUCCESSORS do
20 STACK.push((S′, τ ′A, T

′));
21 end
22 end
23 return NULL, ∞, INFEASIBLE;

For each successor window-node s′, we generate a successor tree-node
(S′, τ ′A, T

′) by generating a trajectory τ̄ ′A that begins at (τA(T ), T ) and inter-
cepts s′. We plan τ̄ ′A using Alg. 1, obtaining final time T ′ = T +g(s′). Condition
1 in the definition of a successor window-node ensures that we always find a
trajectory in this step. Next, we generate a path S′ through Gtw (or a cycle
through Gtw, if s′ = sd) by appending s′ to S (Alg. 2, Line 8). Then we perform
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a check denoted as Lookahead in Line 9. In particular, let Γunvisited be the set
of targets unvisited by S′ = (sd, s

1, s2, . . . , s′):

Γunvisited = [Nτ ] \ {targ(si) : i ∈ [|S′| − 1]}. (5)

where |S′| is the length of S′. If inequality (6) holds for some i ∈ Γunvisited,

T ′ > max
s′′∈{s′′′∈Vtw:targ(s′′′)=i}

LFDT (s′, s′′). (6)

then the agent has arrived at s′ too late to intercept target i in the future,
making it impossible to intercept the set of unvisited targets. Thus we do not
add S′ as a successor to S. This Lookahead check is analogous to Test 1 in [6].
While it is not needed for completeness, it reduces computation time.

If the Lookahead check succeeds, we concatenate τ̄ ′A with τA to obtain tra-
jectory τ ′A, and thereby a partial solution (τ ′A, T

′) corresponding to S′ (Line 12.
If s′ = sd, then (τ ′A, T

′) is a feasible solution to the MT-TSP-O and we return
(Line 14). Otherwise, we add (S′, τ ′A, T

′) to the list of successors of S (Line 16).
After obtaining all successors, we push the successors onto the stack in order
of decreasing final time (Lines 18-21), so the next popped tree-node will be the
successor of (S, τA, T ) with the earliest final time.

4 Theoretical Analysis

In this section, we state MTVG-TSP’s completeness theorems and sketch the
proofs, providing full proofs in Appendix C in the supplementary material.

Theorem 1. Alg. 1 finds a minimum-time trajectory beginning at (p, T ) and
intercepting s, if one exists.

Theorem 1’s proof is similar to the admissibility proof of A* [9], differing since
the cost of an edge (q, s) in the MTVG depends on g(q) in the A* search. In
general, such path-dependent edge costs can make it necessary for an optimal
path in a graph to take a suboptimal path to some intermediate node. The bulk
of Theorem 1’s proof lies in showing that this is never necessary in the MTVG.

Definition 1. Let (τ∗A, T
∗) be a solution to the MT-TSP-O. (τA, T ) is a prefix

of (τ∗A, T
∗) if τA(t) = τ∗A(t) for all t ∈ [0, T ] and T ≤ T ∗.

Theorem 2. If an MT-TSP-O instance is feasible, MTVG-TSP finds a feasible
solution.

Proving Theorem 2 requires showing that Alg. 2 terminates, and that it termi-
nates by returning a feasible MT-TSP-O solution, as opposed to terminating
on Line 23 due to an empty stack. Termination is guaranteed because Alg. 2’s
search tree is finite. We show that termination is not caused by an empty stack
via an induction argument proving that there is always a prefix of a feasible
MT-TSP-O solution on the stack. We detail the induction step here.
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Suppose a tuple (S, τA, T ) is popped from the stack with (τA, T ) a prefix of
some feasible MT-TSP-O solution (τ∗A, T

∗). Let p = τA(T ). Of the window-nodes
intercepted by τ∗A but not τA, let s′ be the window-node intercepted earliest.
Since τ∗A travels feasibly from (p, T ) to s′, arriving at some time T ∗′, Theorem
1 implies that Alg. 1 generates a trajectory τ̄ ′A from (p, T ) to s′, arriving with
T ′ ≤ T ∗′. Under the assumptions that the targets move no faster than the
agent’s maximum speed and do not enter the interior of obstacles during their
time windows, it is feasible for an agent trajectory to follow τtarg(s′) from T ′

to T ∗′. Therefore we can construct a feasible MT-TSP-O solution (τ∗∗A , T ∗) by
having the agent follow τA until time T , follow τ̄ ′A until T ′, follow τtarg(s′) from
T ′ to T ∗′, and follow τ∗A from T ∗′ to T ∗. We push (S′, τ ′A, T

′) onto the stack,
where τ ′A is the concatenation of τA with τ̄ ′A, and (τ ′A, T

′) is a prefix of (τ∗∗A , T ∗).

Theorem 3. If an MT-TSP-O instance is infeasible, MTVG-TSP terminates
and reports infeasible in finite time.

Termination of Alg. 2 follows from its search tree being finite, so the re-
maining claim to prove is that Alg. 1 terminates when performing LFDT com-
putations before executing Alg. 2. To do so, we use the condition on Line 12
gcand(v

′) ≤ tf (s) − T to prevent the search from generating nodes that are
reached after the end time of s, which bounds the number of steps through G̃vis

away from p the search will ever explore. We then apply this bound within the
termination proof of A* [9].

5 Experiments

Fig. 3. Example 20-target instance. Each
target’s time window lengths sum to 26 s.

We ran all experiments on an In-
tel i9-9820X 3.3GHz CPU with 128
GB RAM. As a baseline, we im-
plemented a sampled-points based
method detailed in Section 5.1, based
on prior work that solve special cases
of the MT-TSP-O [14,19,23]. We test
MTVG-TSP and the baseline on 570
problem instances, where an instance
consists of a depot location, trajecto-
ries and time windows of targets, and
an obstacle grid. An example instance
is shown in Fig. 3, and we show a so-
lution to an example instance in the video in the supplementary material. For
each method, we measured the computation time for the method to obtain its
first feasible solution for each instance, setting an upper limit of 300 s.

5.1 Baseline

For our baseline, based on [14, 19, 23], we sample the trajectory of each target
within its time windows into points in space-time, such that if we concatenated
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all of a target’s time windows, the points would be spaced uniformly in time.
Next, we plan the shortest obstacle-free path in space between each pair of points
using [4], then convert the path into a trajectory where the agent moves at max
speed along the path, then waits with zero velocity at the final position until
the final time. If the agent cannot reach the final position by the final time,
travel between those two points is infeasible. After computing these trajectories,
we pose a generalized traveling salesman problem (GTSP) to find a sequence
of points to visit. We then formulate the GTSP as an integer linear program
(ILP) as in [12], but without subtour elimination constraints. Subtours are only
possible if trajectories of two targets intersect exactly in space and time, and we
ensure this does not occur. We solve the ILP using Gurobi, obtaining a sequence
of points, then concatenate the trajectories between every consecutive pair of
points in the sequence to obtain a MT-TSP-O solution.

Since we are not guaranteed to get a feasible solution for a fixed number of
sample points, we initialize the algorithm with 10 points per target. If the ILP is
infeasible, we increase the number of points by 10 and attempt to solve the ILP
again. We repeat this process until the ILP is feasible, then take the first feasible
solution Gurobi produces. The computation time reported for an instance is the
sum of computation times for all attempted numbers of sample points.

5.2 Generating Problem Instances

We generated two sets of instances, corresponding to Experiment 1 (Section
5.3) and Experiment 2 (Section 5.4). In Experiment 1, we varied the number of
targets from 10 to 30 in increments of 10 and varied the sum of each target’s
time window lengths from 2 s to 50 s in increments of 4, keeping the number of
time windows per target fixed to 2. In Experiment 2, we varied the number of
targets as in Experiment 1 and the number of time windows per target from 1
to 6, keeping the sum of lengths fixed. We generated 10 instances for each choice
of experiment parameters. When varying the sum of a target’s time window
lengths, we randomly generated the instances with the longest windows first,
then randomly shortened the time windows to generate more instances. When
varying the number of windows per target, we first generated instances with 1
window with length equal to 22 s, then randomly split this single window into
multiple windows. We generated the instances prior to shortening and splitting
time windows as follows to ensure all instances were feasible. First, we randomly
sampled an occupancy grid with 20% of cells occupied. Then we initialized the
agent at a random depot location pd in free space. Finally we repeated the
following steps Nτ times, starting with i = 1, p0 = pd, and t0 = 0:

1. Sample an interception position pi in free space for target i.
2. Plan a path in space from pi−1 to pi using [4].
3. Move the agent at a speed βvmax along the path until the end of the path

at pi, obtaining an arrival time ti = ti−1 + di/(βvmax), where di is the
distance traveled along the path. Here, we use β = 0.99 to make the instances
challenging without making them borderline infeasible.
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4. Sample a piecewise linear trajectory for target i such that the number of
linear segments equals the specified number of time windows, the trajectory
duration is greater than the specified sum of window lengths, and the trajec-
tory arrives at position pi at time ti. For each segment of the trajectory, we
sample the velocity direction uniformly at random, then select the speed uni-
formly at random from the range [vmax

8 , vmax

4 ]. This range is from [20], which
studies the MT-TSP. After creating this trajectory, we randomly sample a
subset of each segment’s time interval to create the time windows.

5.3 Experiment 1: Varying Sum of Time Window Lengths

In this experiment, we varied the number of targets and the sum of each target’s
time window lengths. The results in Fig. 4 show that as we increase the number
of targets, we see wider and wider ranges for the sum of window lengths where
MTVG-TSP outperforms the sampled-points method in median and maximum
computation time. In these critical ranges, the sampled-points method’s compu-
tation time is large because it needs a large number of points to find a feasible
solution, as shown in Fig. 5, leading to a large underlying integer program. In
Appendix A in the supplementary material, we show that these peaks occur
when there are large intervals in some target’s time windows where no feasible
MT-TSP-O solution intercepts the target. In these cases, it is difficult to sample
a point in one of the usable intervals where some feasible solution does intercept
the target, since the combined length of these usable intervals is small relative
to the combined length of the time windows.

MTVG-TSP’s median computation time varies less significantly than the
sampled-points method’s, though MTVG-TSP’s maximum computation time
peaks in the same regions as the sampled-points method’s. For example, in Fig.
4 (b), consider the 20-target instance with the largest peak in MTVG-TSP’s
runtime, occuring when the sum of time window lengths equals 14 s. In this
instance, we found that if we decreased the sum of lengths to 10 s, MTVG-
TSP found a solution intercepting the same sequence of time windows as it did
for the 14 s instance, but with 65% less computation time. The reason for this
phenomenon is that in the 14 s instance, there are several paths through Gtw

that do not exist in the 10 s instance, adding branches to Alg. 2’s search tree.
Profiling showed that in the 14 s instance, Alg. 2 spent 60% of its time exploring
these additional branches. The fact that it returned the same sequence of time
windows as in the 10 s instance indicates that the additional paths through Gtw

are useless: they cannot be part of a cycle corresponding to a feasible MT-TSP-O
solution, only adding to computation time. On the other hand, we found that
increasing the sum of time window lengths from 14 s to 18 s caused MTVG-TSP
to find a different time window sequence than in the 14 s instance, and twice as
quickly. In this case, increasing time window lengths added useful paths to Gtw.

In Table 1, we compare the costs between the methods in instances where
the sampled-points method found a solution7. The median percent difference in
7 MTVG-TSP found a solution in all instances.
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Fig. 4. Time for each algorithm to compute a feasible solution, varying the sum of
time window lengths per target while fixing the number of time windows to two. The
sampled-points method reached the time limit in 11% of instances without finding a
feasible solution. In these cases, the computation time is set equal to the time limit.
MTVG-TSP did not reach the time limit in any instance.

Fig. 5. Maximum attempted number of points per target used by sampled-points
method. In instances where the method found a feasible solution, we report the number
of points used to obtain the solution. In instances where the method timed out, we
report the number of points upon timeout.

Table 1. Comparison of the solution costs TMTV G from our method against the costs
TPT from the sampled-points method. Appendix B provides plots of these costs.

Median Min Max

TMTV G−TPT
TPT

∗ 100% -0.46% -28% 34%
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cost between the methods is small, indicating that both methods often provide
similar solution quality. The range of percent differences is large, since we take
the first feasible solution from each method as opposed to solving to optimality.

5.4 Experiment 2: Varying Number of Time Windows per Target

In this experiment, we varied the number of targets and number of time win-
dows. Since the sampled-points method does not depend on the number of time
windows, only the total set of times covered by the time windows (which we
are not varying), we run the sampled-points method for the instances with one
window, then show the same runtimes for instances with multiple time windows.
As shown in Fig. 6, when we decrease the number of time windows, MTVG-
TSP outperforms the sampled-points method in median and max computation
time. Both methods’ computation times increase with the number of targets.
To explain the trends in MTVG-TSP’s computation time, we divide its compu-
tation time between its three major components: initial visibility computations
(Section 3.2), time window graph construction (Section 3.4), and trajectory tree
construction (Section 3.5). Fig. 7 shows that computation time for all compo-
nents increases with the number of targets and number of time windows per
target. Increasing either of these quantities increases the total number of time
windows, leading to more window-nodes in the time window graph. This requires
adding more nodes into the initial visibility graph corresponding to endpoints
of targets’ trajectories within their time windows, and computing more visible
interval sets. Both operations increase initial visibility computation time. More
window-nodes also leads to more pairwise LFDT computations when construct-
ing the time window graph. Finally, a larger time window graph leads to a wider
and deeper trajectory tree, leading to a larger number of MTVG constructions
and searches during trajectory tree construction.

Fig. 6. Time for each algorithm to compute a feasible solution, varying the number of
time windows.
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Fig. 7. Breaking down computation time for MTVG-TSP.

We similarly break down the timing for the sampled-points method in this
experiment in Appendix B, Fig. 10, dividing time between GTSP graph con-
struction (finding trajectories between all pairs of points) and GTSP solve time.
GTSP solve time exceeds graph construction time when we have 20 or more
targets.

6 Conclusion

In this paper, we presented MTVG-TSP, a complete algorithm for the moving
target traveling salesman problem with obstacles, leveraging a novel graph called
a moving target visibility graph (MTVG). We showed that for a range of time
window lengths, our algorithm takes less median and maximum time to find
feasible solutions than prior methods. Future directions for this work are to
incorporate kinodynamic constraints on the agent and involve multiple agents.
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Appendix A Characterizing Instance Difficulty Using the
Minimum Usable Fraction

We define the usable time set of target i as the set w̄i ⊆
⋃

j∈[Ni]

wi,j such that for

all t ∈ w̄i, some feasible solution to the MT-TSP-O intercepts target i at time t.
We can partition the usable time set uniquely into a set of disjoint subintervals
W̄i = {w̄i,1, w̄i,2, . . . , w̄i,|W̄i|} of target i’s time windows, where each w̄i,j is called
a maximal usable interval. We define the usable fraction for target i as the sum
of lengths of target i’s maximal usable intervals, divided by the sum of lengths
of target i’s time windows. For a given instance, we call the minimum usable
fraction the minimum over all targets of their usable fractions. Fig. 8 shows
that the minimum usable fraction is a measure of difficulty of an instance. As
the minimum usable fraction decreases, a method that represents trajectories of
targets using sample points, as described in Section 5.1, tends to need a larger
number of points to find a feasible solution.

To compute the usable fraction, we must enumerate each target’s maximal
usable intervals. Each maximal usable interval w̄i,j for target i can be represented
uniquely as a union of several possibly overlapping sequence-specific usable in-
tervals w̄i,j,k, where each k corresponds to a unique set of feasible MT-TSP-O
solutions that intercepts a particular sequence of window-nodes. If we enumerate
all sequences of window-nodes corresponding to a feasible MT-TSP-O solution,
find the sequence-specific usable interval for each target, for each sequence, then
merge any of a target’s overlapping sequence-specific usable intervals, we have
the maximal usable intervals for each target. Then we can compute the usable
fraction.

Now we show how to compute the sequence-specific usable intervals for each
target, given a sequence of window-nodes S = (s1, s2, . . . , sNτ ). First, we apply
Alg. 1 recursively to determine for each si the earliest possible time tE,i that an
agent trajectory could intercept si while respecting the order of S. In particular,
we start by running Alg. 1 from point (pD, 0) to s1, obtaining arrival time tE,1.
Then for each i from 1 to Nτ − 1, we run Alg. 1 from point (τtarg(si)(t

E,i), tE,i)

to si+1 and obtain arrival time tE,i. We can similarly run Alg. 1 backwards in
time to determine the latest possible time tL,i a trajectory could intercept each
si while respecting the order of S. We start by setting tL,Nτ = tf (sNτ ). Then for
each i from Nτ to 2, we construct a fictitious window-node sF = (−i, tL,Nτ , tL,i),
with τ−i(t

L,i) = τtarg(si)(t
L,i) and compute tL,i−1 = LFDT (si−1, sF ). [tE,i, tL,i]

is the sequence-specific usable interval for targ(si) corresponding to the set of
feasible MT-TSP-O solutions that intercepts the window-nodes in S in order.

In Fig. 8, we perform the above procedure to compute all sequence-specific
usable intervals, then the maximal usable intervals, then the usable fraction for
each target, and finally the the minimum usable fraction for each instance, in
the instances from Experiment 1 (Section 5.3) with 10 targets. In the instances
with 20 or more targets, we found that enumerating all window-node sequences
became intractable. We plot the minimum usable fraction against the number
of points used by the sampled-points method in that instance. The number of
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points is large when the minimum usable fraction is small, since it means that for
some target, most of its sample points will land in some unusable interval within
the target’s time windows, where no feasible solution intercepts the target.

Fig. 8. Minimum usable fraction vs. number of points used by sampled-points method,
which is the number of targets times the number of points per target. Each point
represents one of the instances with 10 targets from Experiment 1 (Section 5.3). When
the minimum usable fraction is small, the sampled-points method needs many points.
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Appendix B Additional Plots

Fig. 9. Comparing costs of feasible solutions from MTVG-TSP and the sampled-points
method, in cases where the sampled-points method found a feasible solution.

Fig. 10. Breaking down computation time for sampled-points method. As we increase
the number of targets, the median time to solve the GTSP for a sequence of points
overtakes the time to construct the GTSP graph, where graph construction consists of
finding trajectories between all pairs of points.
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Appendix C Proof of Completeness

C.1 Proof of Theorem 1

In this section, we provide intermediate results and finally a proof for Theorem
1 from the main paper, appearing as Theorem 4 here, stating that Alg. 1 finds
a minimum-time trajectory from a point (p, T ) ∈ R2 ×R to a goal window-node
s. Formally, Alg. 1 solves the following optimization problem:

(PT-MT) T ∗ = min
τ ′A, T

′
T ′ (7a)

s.t. τA(T ) = p, (7b)
τA ∈ Ψ(T, T ′), (7c)
τA(T

′) = τtarg(s)(T
′) (7d)

Any path Q through G̃vis from p to s can be converted to a feasible solution
for (PT-MT) using the ConstructTrajectory function in Alg. 1, described in
Section 3.5. Next, we show that we can solve (PT-MT) optimally by searching
for an optimal path Q through G̃vis, where we define optimality with respect
to a path cost function cpath. For a path Q = (q0, q1, . . . , qN−1) containing only
position-nodes,

cpath(Q) =
∑

i∈[N−1]

∥qi − qi−1∥2
vmax

. (8)

For a path Q = (q0, q1, . . . , qN−1, s) ending with window-node s, we have

cpath(Q) = cpath(Q[: N ]) + SFT (qN−1, T + cpath(Q[: N ]), s) (9)

where we abused notation and defined the following:

SFT (q, t, s) = min
I∈vis(q,s)

SFT (q, t, s, I). (10)

Here, the notation Q[: N ] indicates the length N prefix of Q, with Q[: N ] =
(q0, q1, . . . , qN−1).

Lemma 1. Suppose problem (PT-MT) is feasible. A path Q = (p, q1, . . . qN−1, s)
through G̃vis from p to s exists with cost T ∗ − T , where T ∗ is the optimal cost
of (PT-MT). Such a path Q is an optimal path through G̃vis.

Proof. Let (τ∗A, T
∗) be one of the optimal solutions to (PT-MT), and in particu-

lar, the optimal solution with minimal distance traveled8. Let p∗ = τtarg(s)(T
∗).

τ∗A necessarily follows a shortest collision-free path π in space from p to p∗. Path
π is necessarily polygonal, with all inner vertices being obstacle vertices [5].
8 Since (PT-MT), minimizes time, not distance, not all optimal solutions will have the

same distance traveled.
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Therefore all inner vertices of π are in VO ⊆ Vvis ⊆ Ṽvis. The source vertex of
π is p, and p ∈ Ṽvis. The destination vertex of π is p∗, p∗ is a position on the
trajectory segment corresponding to s, and s ∈ Ṽvis. The travel time of τ∗A from
p to qN−1 is

∑
i∈[N−1]

∥qi−qi−1∥2

vmax
, with q0 = p. Let Q = (p, q1, . . . , qN−1, s) be the

path in G̃vis beginning with p, containing the inner vertices of π in sequence,
and finishing at s. cpath(Q[: N ]) is the same as the travel time of τ∗A from p to
qN−1, so T + cpath(Q[: N ]) is the same as the arrival time of τ∗A at qN−1.

Suppose for the sake of contradiction that the travel time of τ∗A from qN−1

to p∗ is Tcon with Tcon > SFT (qN−1, T + cpath(Q[: N ]), s), making its arrival
time at s equal to T + cpath(Q[: N ]) + Tcon. Let τ̄A be the trajectory obtained
by converting Q into a feasible (PT-MT) solution using the ConstructTrajectory
function. τ̄A arrives at s at time T + cpath(Q[: N ]) + SFT (qN−1, T + cpath(Q[:
N ]), s), which is less than the arrival time of τ∗A. This is a contradiction because
the optimality of τ∗A precludes any trajectory from arriving at s earlier than τ∗A
does. Thus the travel time of τ∗A from qN−1 to p∗ is SFT (qN−1, T + cpath(Q[:
N ]), s), making its travel time from p to s equal cpath(Q). Therefore cpath(Q) =
T ∗ − T . We have now proven the first part of the lemma, since we have shown
that some path through G̃vis exists from p to s with cost T ∗ − T .

Suppose for the sake of contradiction that some path Q′ from p to s through
G̃vis exists with cpath(Q

′) < T ∗ − T . Q′ can be converted to a feasible solution
for (PT-MT) with cost T+cpath(Q

′), meaning there is a feasible solution to (PT-
MT) with lower cost than T +T ∗ −T = T ∗. This is a contradiction, because T ∗

is the optimal cost of (PT-MT). Thus a path through G̃vis cannot have cost less
than T ∗ − T , making any path with cost T ∗ − T optimal. ⊓⊔

We need the following Lemma in the proof for Lemma 3.

Lemma 2. Let p ∈ R2, and let s be a window-node. Let t1, t2 ∈ R be times when
s is visible to p such that t1 ≤ t2. The following holds:

t1 + SFT (p, t1, s) ≤ t2 + SFT (p, t2, s). (11)

Proof. Let

t1∗ = t1 + SFT (p, t1, s) (12)

t2∗ = t2 + SFT (p, t2, s). (13)

The solution to an SFT problem from (p, t2) to s corresponds to an agent trajec-
tory τ∗A,2 that moves along a straight line in space from (p, t2) to (τtarg(s)(t

2
∗), t

2
∗).

Define the agent trajectory τ∗A,1 as follows:

τ∗A,1(t) =

{
p, t ∈ [t1, t2]

τ∗A,2, t ∈ [t2, t2∗]
(14)

τ∗A,1 starts at (p, t1) and meets s at time t2∗, achieving travel time

t2∗ − t1 (15)
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meaning that the shortest feasible travel time from (p, t1) to s satisfies

SFT (p, t1, s) ≤ t2∗ − t1. (16)

Adding t1 to both sides of (16) and applying (13), we have

t1 + SFT (p, t1, s) ≤ t2 + SFT (p, t2, s).⊓⊔ (17)

Lemma 3. Suppose there is a path through G̃vis from p to s with finite cost.
There is an optimal path Q = (p, q1, . . . qN−1, s) through G̃vis with Q[: M ] also
optimal for all M ≤ N + 1.

Proof. Let an optimal path Q′ = (p, q1, . . . qN−1, s) be fixed and arbitrary, sup-
pose Q′[: N ] is suboptimal, and let cpath(Q

′[: N ]) be the cost of Q′[: N ]. Let R
be an optimal path from p to qN−1. Since Q′[: N ] is suboptimal, we have

cpath(R) < cpath(Q
′[: N ]) (18)

T + cpath(R) < T + cpath(Q
′[: N ]) (19)

From Lemma 2, we have

T+cpath(R) + SFT (qN−1, T + cpath(R), s) ≤
T + cpath(Q

′[: N ]) + SFT (qN−1, T + cpath(Q
′[: N ]), s)

(20)

T + cpath(R) + SFT (qN−1, T + cpath(R), s) ≤ T + cpath(Q
′). (21)

where (21) is the result of applying (9). Now consider a path Q = (R, s), i.e. the
path resulting from appending s to R. The cost cpath(Q) of Q is

cpath(Q) = cpath(R) + SFT (qN−1, T + cpath(R), s) (22)

Substituting (22) into (21), cpath(Q) ≤ cpath(Q
′). Since Q′ is optimal, cpath(Q) ≥

cpath(Q
′), meaning cpath(Q) = cpath(Q

′). Thus Q is optimal. Its prefix Q[: N ] =
R is optimal as well. Furthermore, since the edge costs in R only depend on
their source and destination nodes, without any dependence on an external time
variable, R satisfies the Markov assumption and all of its prefixes are optimal.

⊓⊔

Next, we present a lemma similar to Lemma 1 from [9], but with an extra
assumption in the lemma and additions to the proof, accounting for the fact that
G̃vis does not satisfy the Markov assumption.

Lemma 4. Let Q = (q0, q1, . . . , qN ) be any optimal path in G̃vis from p to s,
with q0 = p and qN = s, satisfying the following properties:

• Q has finite cost
• Q[: M ] is optimal for all M ≤ N + 1.

At any iteration of Alg. 1, if s is not CLOSED, there is a node qi on Q in OPEN
with g(qi) = g∗(qi), where g∗(pi) is the optimal g-value of pi.
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Proof. Suppose q0 is in OPEN. Then Lemma 4 is true, because q0 is on Q.
Suppose q0 is not in OPEN, meaning it is in CLOSED, since the first expan-

sion puts q0 from OPEN into CLOSED. Let ∆ be the set of closed nodes qi in
Q with g(qi) = g∗(qi), and let q∗ be the element in ∆ with largest i. q∗ ̸= s,
because Lemma 4 assumes s is not in CLOSED, so q∗ has a successor on Q. Let
q′ be the successor of q∗ on Q. We have two cases:

Case 1. q′ is a position-node. In this case, the proof proceeds almost exactly
as in the proof of Lemma 1 from [9], apart from one difference. [9] claims
that the optimality of Q implies g∗(q′) = g∗(q∗)+ c̃vis(q

∗, q′). However, since
path Q breaks the Markov assumption, the implication does not hold. We
assumed, however, that all prefixes of Q are optimal, so the prefix Q∗ ending
with q∗ is optimal. Therefore, the cost of Q∗ is g∗(q∗). This means the cost of
Q′ = (Q∗, q′), i.e. the prefix of Q ending in q′, is g∗(q′) = g∗(q∗)+ c̃vis(q

∗, q′).
The rest of the proof proceeds as in [9].

Case 2. q′ = s. When we expanded q∗ (which must have happened for q∗ to
be in CLOSED), we must have generated s as a successor. Since s is not
in CLOSED, it cannot have been in CLOSED when expanding q∗, so if s
was not already in OPEN when we expanded q∗, we must have added s to
OPEN. The candidate g-value of s would have been

gcand(s) = g(q∗) + SFT (q∗, T + cpath(Q[: N ]), s) (23)
= g∗(q∗) + SFT (q∗, T + cpath(Q[: N ]), s) (24)
= cpath(Q[: N ]) + SFT (q∗, T + cpath(Q[: N ]), s) (25)
= cpath(Q). (26)

Since Q is optimal, and gcand(s) is the cost of Q, gcand(s) = g∗(s). Therefore
at the iteration when we generated s as a successor of q∗, we set g(s) =
gcand(s), so g(s) = g∗(s). s cannot have been taken off of OPEN since s is
not in CLOSED, so s = q′ is still in OPEN with g(q′) = g∗(q′). ⊓⊔

One might ask whether there are any optimal paths Q through G̃vis with a
suboptimal prefix Q[: M ], with M < N + 1. In the following example, we show
that there are, considering M = N .

Example 1. Let Q = (p, q1, . . . , qN−1, qN ) be an optimal path in G̃vis from p to s,
with qN = s. Consider a case where the agent can arrive at position τtarg(s)(T

∗)
from (p, T ) earlier than T ∗ while satisfying its speed limit and obstacle avoid-
ancce constraints. In this case, the only way that T ∗ could be the minimum
interception time for s is if t0(s) = T ∗, so if the agent arrives early, it must wait
until the time window corresponding to s begins. Q may therefore take a sub-
optimal path to qN−1, arriving later than optimal at qN−1, as long as Q arrives
at position τtarg(s)(T

∗) at or before time T ∗. In short, the optimality of Q does
not imply the optimality of any of its prefixes.

Finally we restate Theorem 1 from the main paper, in the context of (PT-
MT).
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Theorem 4. If (PT-MT) is feasible, Alg. 1 finds an optimal solution.

Proof. Since (PT-MT) is feasible, its optimal cost T ∗ − T is finite. Applying
Lemma 1, a path Q through G̃vis from p to s has the finite cost T ∗ − T . Since
Q has a finite cost, Lemma 3 holds. Lemma 3 is the assumption required for
Lemma 4. Lemma 4 and the admissibility of our heuristic imply the corollary to
Lemma 1 in [9]. Now Theorem 1 in [9] informs us that Alg. 1 terminates with
g(s) = g∗(s), i.e. it terminates with an optimal path to s. Applying Lemma
1 again, an optimal path in G̃vis to s has cost equal to the optimal cost of
(PT-MT). Therefore when we convert Q into a trajectory, we obtain an optimal
solution to (PT-MT). ⊓⊔

C.2 Proof of Theorems 2 and 3

In this section, we formally present the proofs of Theorems 2 and 3 from the
main paper, appearing as Theorem 5 and 6, respectively.

Theorem 5. If an MT-TSP-O instance is feasible, Alg. 2 finds a feasible solu-
tion.

Proof. First we show that Alg. 2 terminates. Then we show that Alg. 2 termi-
nates by returning a feasible MT-TSP-O solution, as opposed to terminating
on Line 23 due to an empty stack. Termination is guaranteed because Alg. 2’s
search tree is finite. We show that termination is not caused by an empty stack
via an induction argument proving that there is always a prefix of a feasible
MT-TSP-O solution on the stack when we check for stack emptiness on Line 3
at the beginning of a loop iteration.

Base Case: On Line 2, we add the NULL trajectory to the stack, which is
simply a trajectory τA satisfying τA(0) = pd. (τA, 0) is a prefix of all feasible MT-
TSP-O solutions. A feasible solution exists by the assumption of the theorem,
so (τA, 0) is a prefix of at least one feasible solution.

Induction Hypothesis: Suppose (S, τA, T ) is on the stack during some loop
iteration with (τA, T ) a prefix of a feasible MT-TSP-O solution (τ∗A, T

∗).
Induction Step: If we do not pop (S, τA, T ), the induction hypothesis is triv-

ially still satisfied when we check Line 3 at the next loop iteration. Suppose we
pop (S, τA, T ). Let p = τA(T ). Of the window-nodes intercepted by τ∗A but not
τA, let s′ be the window-node intercepted earliest. Since τ∗A travels feasibly from
(p, T ) to s′, arriving at some time T ∗′, Theorem 1 implies that Alg. 1 generates
a trajectory τ̄ ′A from (p, T ) to s′, arriving with T ′ ≤ T ∗′. Under the assumptions
that the targets move no faster than the agent’s maximum speed and do not
enter the interior of obstacles during their time windows, it is feasible for an
agent trajectory to follow τtarg(s′) from T ′ to T ∗′. Therefore we can construct a
feasible MT-TSP-O solution (τ∗∗A , T ∗) by having the agent follow τA until time
T , follow τ̄ ′A until T ′, follow τtarg(s′) from T ′ to T ∗′, and follow τ∗A from T ∗′

to T ∗. If s′ = sd, we return a feasible solution on Line 14 and we never check
Line 3 again. If s′ ̸= sd, we push (S′, τ ′A, T

′) onto the stack, where τ ′A is the
concatenation of τA with τ̄ ′A, and (τ ′A, T

′) is a prefix of (τ∗∗A , T ∗).
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By induction, there is always a prefix of a feasible MT-TSP-O solution on
the stack. As we stated at the beginning of the proof, this guarantees that Alg.
2 terminates and returns a feasible solution.

Theorem 6. If MT-TSP-O is infeasible, Alg. 2 terminates and reports infeasi-
ble in finite time.

Proof. Alg. 2’s search tree is finite, so Alg. 2 must terminate. It cannot terminate
by returning a feasible solution on Line 14 because no feasible solution exists, so
it must terminate on Line 23 and report infeasible.

Recall that before executing Alg. 2, we must compute the LFDT from ev-
ery window-node to every other window-node, using Alg. 1. We must there-
fore ensure that Alg. 1 reports infeasible in finite time for an infeasible query
(p, T, s,Gvis, Λvis). Line 12 prevents Alg. 1 from adding nodes v′ into OPEN
with g(v) + c̃vis(v, v

′, T + g(v)) > tf (s) − T , where v is a predecessor of v′.
Therefore the search will never add nodes to OPEN more than M = tf (s)−T

δ

steps away from p, where δ is a lower bound on edge costs in G̃vis. We can use
the upper bound M with the proof of Theorem 1, Case 2 in [9] to prove that for
infeasible queries, Alg. 1 will terminate and report infeasible.


	A Complete Algorithm for a Moving Target Traveling Salesman Problem with Obstacles

