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Abstract. This paper investigates a constrained inverse kinematic (IK)
problem that seeks a feasible configuration of an articulated robot under
various constraints such as joint limits and obstacle collision avoidance.
Due to the high-dimensionality and complex constraints, this problem
is often solved numerically via iterative local optimization. Classic local
optimization methods take joint angles as the decision variable, which
suffers from non-linearity caused by the trigonometric constraints. Re-
cently, distance-based IK methods have been developed as an alternative
approach that formulates IK as an optimization over the distances among
points attached to the robot and the obstacles. Although distance-based
methods have demonstrated unique advantages, they still suffer from
low computational efficiency, since these approaches usually ignore the
chain structure in the kinematics of serial robots. This paper proposes
a new method called propagative distance optimization for constrained
inverse kinematics (PDO-IK), which captures and leverages the chain
structure in the distance-based formulation and expedites the optimiza-
tion by computing forward kinematics and the Jacobian propagatively
along the kinematic chain. Test results show that PDO-IK runs up to
two orders of magnitude faster than the existing distance-based methods
under joint limits constraints and obstacle avoidance constraints. It also
achieves up to three times higher success rates than the conventional
joint-angle-based optimization methods for IK problems. The high run-
time efficiency of PDO-IK allows the real-time computation (10−1500
Hz) and enables a simulated humanoid robot with 19 degrees of freedom
(DoFs) to avoid moving obstacles, which is otherwise hard to achieve
with the baselines.

Keywords: Kinematics · Distance Constraints · Articulated Robots.

1 Introduction

For an articulated robot consisting of rigid links and revolute joints, the inverse
kinematics (IK) problem seeks joint angles (i.e., a configuration) such that the
end effector(s) reach a given pose, which is a fundamental problem in robotics.
This paper focuses on the constrained IK that requires finding a feasible con-
figuration under various constraints, including joint angle limits, and collision
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avoidance of workspace obstacles. Constrained IK can only be solved analytically
for some specific robots. For the general case, constrained IK is usually formu-
lated as constrained optimization problems and solved numerically via iterative
local optimization. This local optimization often suffers from non-linearity due
to the kinematic model of the robot, i.e., the mapping from the joint space,
commonly represented with angles, to the task space, typically represented in
the Euclidean space [13]. In particular, the kinematic model leads to complicated
trigonometric constraints, which can trap the optimization in a local optimum
that is highly sub-optimal or even infeasible, especially in the presence of high
degrees of freedom (DoF) and cluttered workspace with many obstacles.

To address this challenge, an important class of methods in the literature is to
eliminate the trigonometric mapping in the kinematic model by using distance-
based optimization [17,9,15,13,7,14,18]. Instead of optimizing the joint angles,
distance-based methods attach points to the robot and the obstacles, and refor-
mulate the constrained IK as an optimization over the distances among these
points. To name a few, Josep et al. [17] formulated the kinematics of 6-DoF se-
rial robots using a distance matrix [5] and solve the IK with matrix completion
leveraging Cayley-Menger determinant [19]. Marić and Giamou et al captures
the sparsity of the distance matrix [14] and use sparse bounded-degree sum of
squares relaxations [22] to solve IK for spherical joint robots without considering
collisions. Marić et al. proposed a distance-geometric framework called Rieman-
nian Trust Region (R-TR) [13] to solve the constrained IK by optimizing the
distance matrix using Riemannian optimization.

Despite these advancements, distance-based methods still suffer from low
computational efficiency. This paper proposes a new distance-based IK method
called PDO-IK. Our key insight is that: Most existing distance-based methods
for IK ignore the chain structure of the kinematics of serial robots after the
reformulation, and purely focus on optimizing the distances among the points. In
contrast, PDO-IK derives a new kinematic model based on the distance between
points attached to the robot that captures and leverages such chain structures.
PDO-IK computes the forward kinematics and Jacobian propagatively along the
kinematic chain, which decomposes the kinematics model into a set of serially
connected units and iteratively solve for one unit after another along the chain. In
our formulation, such units are described using the points attached on each frame
of robot link. This introduces two advantages: First, the computation of any
unknown variable can re-use the variables that have already been computed in its
neighbouring unit. Second, the matrix of the distances between points is sparse,
which reduces the amount of variables to compute. These advantages allow fast
computation of the forward kinematics and Jacobians, and thus expedite the
overall optimization. In particular, our technical contributions include both (i) a
novel distance-based formulation of the constrained IK, and (ii) an optimization
algorithm using augmented Lagrangian based on the proposed formulation and
the analysis of its runtime complexity.

For verification, we compare our PDO-IK against both a joint angle-based
optimization method and some recent distance-based methods [13] as baselines
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in various settings. The results show PDO-IK can often double or triple the
success rates (i.e., finding a feasible solution within a runtime limit) of the joint
angle method, and run up to two orders of magnitude faster than the existing
distance-based methods, especially in cluttered workspace. In addition, PDO-IK
demonstrates better numerical robustness than the baselines in the sense that
PDO-IK can achieve a small numerical error tolerance that is below 10−4, while
the error tolerance of the baselines is often larger than 10−3. Finally, we show
the generalization capability of PDO-IK by applying it on a humanoid robot
(19 DoFs) with the additional position constraints on the center of mass (CoM).
The runtime efficiency of PDO-IK allows the real-time computation (10−1500
Hz) and enables the robot to avoid dynamic obstacles, which is otherwise hard
to achieve with the baselines.

2 Preliminaries

Robot kinematics describes the relationship between the configuration space C
and the task space T . The mapping F : C → T is the forward kinematics (FK),
while its inverse F−1 : T → C is the IK. In this paper, we focus on the end-
effector pose objective defined in T , joint limits as box constraints defined in C,
and collision avoidance constraints.

We consider a serial robot with M revolute joints 3. We use i as the index
for joints and links. For the robot bodies, i = 1, . . . ,M and we define link 0
as the fixed base. Joint i lies between link i − 1 and link i. We use vector
θ = [θ1, . . . , θM ] ∈ RM to represent the joint angles with θi being the revolute
angle of joint i. We also define unit vectors xi, yi, and zi to denote the x-, y-,
and z-axes of frame Fi, which is the coordinate frame attached to link i. The
obstacles in the environment are considered as clusters of points, with a total of
N points. ⌈·⌉ denotes the ceiling function.

∑
(·) denotes the sum of all elements

within a vector or matrix.

2.1 Denavit–Hartenberg Parameters

The kinematic chain formulation in this paper builds upon the proximal De-
navit–Hartenberg (DH) convention [4]. As shown in Fig. 1a, we attach the origin
oi of frame Fi to the revolute axis of joint i. The direction of the axis zi aligns
with the revolute axis of joint i. xi is perpendicular to and intersects zi and
zi+1. yi is defined by the right-hand rule with xi and zi. The transformation
from frame Fi−1 to frame Fi is:

i−1Ti = f(θi;αi−1, ai−1, di) =


cθ −sθ 0 ai−1

sθcα cθcα −sα disα
sθsα cθsα cα dicα
0 0 0 1

 (1)

where i ≥ 1, cθ = cos θi, sθ = sin θi, cα = cosαi−1, sα = sinαi−1, ai−1 is
the revolute radius of Fi to axis zi−1, αi−1 is the angle from zi−1 to zi about
3 Tree-structure robots and parallel robots can also be handled by adding extra con-

straints. An example is tested in Sec. 5.3.
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Fig. 1: Kinematics model, constraints, and objective under distance-based repre-
sentation, as well as the propagation structure in our method. (a) The kinematic
chain of a linkage of revolute joints. (b) Joint angle decomposition. (c) Collision
avoidance constraint. (d) End effector pose objective. (e) The propagation struc-
ture in a diagonal matrix of distances in the forward rollout. The propagation
in Jacobian computation follows the inverse direction of the forward rollout.

common normal, di is the offset of Fi to Fi−1 along zi, and θi is the revolute
angle from xi−1 to xi about zi.

2.2 Quasi-Newton Method

Quasi-Newton method [6] is a variant of Newton’s method when the Hessian
is unavailable or expensive to compute, which iteratively finds the minimum of
a function f(x) by finding the root of its Jacobian ∇f . Quasi-Newton methods
approximate Hessian in each iteration k given f(xk) and ∇f(xk). Popular quasi-
Newton methods include Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) [12], Broyden’s method [2], etc.

3 Kinematics and Constraints Formulation

PDO-IK represents joint space, task space, and constraints with Euclidean dis-
tances between points attached on the robot and obstacles. This section primar-
ily discusses our formulation of the robot kinematics chain (Sec. 3.1), joint limit
constraints (Sec. 3.2), collision avoidance constraints (Sec. 3.3), and end effector
pose objective (Sec. 3.4).

3.1 Kinematic Chain

We formulate the kinematic chain by modifying the proximal DH convention,
replacing the joint angles with Euclidean distances between points. As shown in
Fig. 1a, we first attach points to the link frames Fi and then re-parameterize
the proximal DH matrix with the Euclidean distances among points.
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We attach three points on Fi. The first point ui is attached to the origin oi

to represent the spatial position of joint i. The second point vi is of distance luvi
away from ui in the direction of xi−1. The third point wi is of distance luwi away
from ui in the direction of xi. The distance between vi and wi, denoted as lvwi ,
is determined by θi using the Law of Cosines. The positions of these points and
their confinements describe the robot’s structure and motion:

ui = oi (2a) vi − ui = luvi xi−1 (2b)

wi − ui = lwv
i xi (2c) 2luvi luwi cos θi = luvi

2+luwi
2−lvwi

2 (2d)

We define the squared distance Li = lvwi
2 so that cos θi ∝ Li. For simplicity,

we let luvi = luwi = 1/
√
2 such that

cos θi = 1− Li (3a)

sin θi =
(
1− cos θi

2
) 1

2 =
(
2Li − L2

i

) 1
2 (3b)

Notably, Eq. 3b assumes that θi lies in the range [0, π] [14], and accordingly,
Li lies in the range [0, 2]. This is because θi and π − θi correspond to the same
value of Li in our formulation, and we only consider the one that falls within
[0, π]. This introduces an additional challenge when the joint angle limit θi is
not a subset of [0, π], which will be addressed in Sec. 3.2.

After attaching points on Fi, we re-parameterize i−1Ti by substituting Eq. 3a
and Eq. 3b to Eq. 1:

i−1Ti = g(Li;αi−1, ai−1, di) =


1− Li −(2Li−L2

i )
1
2 0 a

cα(2Li−L2
i )

1
2 cα(1− Li) −sα dsα

sα(2Li−L2
i )

1
2 sα(1− Li) cα dcα

0 0 0 1

 (4)

The transformation of frame Fi with respect to the world frame, which is
Ti, can be computed by recursively multiplying from 0T1 to i−1Ti. Then, we
can extract the position of the joint ui from Ti:

Ti =

i∏
p=1

p−1Tp (5a) ui =
[
T

(1,4)
i , T

(2,4)
i , T

(3,4)
i

]⊤
(5b)

3.2 Joint Limit Constraints

Joint limits refer to the restrictions on the range of motion for each joint. This
paper focuses on the maximum and minimum joint angle limitations, which are
formulated as box constraints θi ∈ [θmin

i , θmax
i ]. Our method handles the joint

angle constraints by limiting the corresponding squared distance Li between
Lmin
i and Lmax

i . Then, we convert the box constraints to equality constraints by
introducing a squashing function based on the sigmoid function [8].

The formulation of Li in Eq. 3b assumes that θi is within the range [0, π].
However, the joint angle limits in real-world robotic arms often exceed this range.
We address this issue with angle decomposition. Let θmin

i = 0 and k = θmax
i /π >
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0 so that θi ∈ [0, kπ]. We divide θi into ⌈k⌉ sub-angles θim so that all of the
sub-angles lie within the range of [0, π]:

θi =
∑⌈k⌉

m=1 θim, θim ∈
[
θmin
i /⌈k⌉, kπ/⌈k⌉

]
⊆ [0, π] (6)

Fig. 1b shows an example of angle decomposition when m = 3. By dividing
joint angles into sub-angles, we further attach additional points wim on the side
of θim, and use lm to describe the distance between wim and w′

i(m−1). Again,
we take the distance between wim and ui as 1/

√
2. Lim is the corresponding

squared distance of θim such that
cos θim = 1− Lim (7)

By substituting Eq. 6 into Eq. 7, the range of Lim is:
1− cos (θmin

i /⌈k⌉) ≤ Lim ≤ 1− cos (kπ/⌈k⌉) (8)
With the above decomposition process, we can compute i−1Ti using Lim:

i−1Ti =

⌈k⌉∏
m=1

g(Lim) (9)

So far, we have transformed the joint limit constraint to the box constraints
on Li or Lim. Box constraints are commonly handled by clamping the variables
[10], penalizing over constraint violation [20,11], or converting to equality con-
straints [1,16]. In this work, we convert the box constraint to equality constraints
using a squashing function s(ω) with the following properties [16]:

s(ω) : R → (smin, smax) (10a)
d

dω
s(ω) ≥ 0 (10b)

smin = lim
ω→−∞

s(ω), smax = lim
ω→∞

s(ω) (10c)

where ω ∈ R is the slack variable. We build our squashing function for Li upon
the sigmoid function [8]

σ(ωi) =
1

1 + e−ωi
: R → (0, 1) (11)

by linearly scaling σ(ωi) with (Lmax
i − Lmin

i ) and adding a bias term Lmin
i :

Li = s(ωi) =
(
Lmax
i − Lmin

i

)
σ(ωi) + Lmin

i (12a)
s(ωi) : R → (Lmin

i , Lmax
i ) (12b)

Eq. 12a and Eq. 12b bound the squared distance Li within (Lmin
i , Lmax

i ),
which is a close approximation to [Lmin

i , Lmax
i ]. The same constraint conversion

can also be applied to Lim.
We arrange the slack variables ωi or ωim into a vector ω ∈ RM ′

, where
M ′ ≥ M due to the presence of angle decomposition. In our optimization al-
gorithm, which will be detailed in Sec. 4, we directly optimize over the slack
variable ω. This brings several advantages at the cost of additional non-linearity:
First, the squashing function is a smooth function that eliminates issues at box
constraint boundaries where the gradient might be zero, discontinuous, or unde-
fined. Moreover, the squashing function avoids the need for explicit checks and
enforcement of box constraints during the optimization process.
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3.3 Collision Avoidance Constraints

Collision avoidance constraints ensure that the robot does not overlap with ob-
stacles. Distance-based IK methods utilize points attached to the robot and use
the minimum distance between these points and obstacles for collision avoid-
ance [13]. This models the robot’s occupation space as a collection of spheres.
Achieving an accurate occupation space requires attaching many points to the
robot, making the collision avoidance constraints computationally expensive.

We propose a novel formulation of collision avoidance that only requires
the points attached to joints to achieve full-body collision avoidance (Fig. 1c).
Moreover, to better handle unstructured obstacles, our framework considers the
obstacles as clusters of points rather than as spheres. This is inspired by the
common use of LiDAR or depth cameras in robots, which detect and represent
environmental obstacles as point clouds. Consequently, clusters of points, or
point clouds, are a natural modality for obstacle representations. We separately
consider the collision avoidance formulation for robot joints and links.

The occupation space of the joint is considered as a sphere, whose center is
at ui and the radius is ri. For joint i, we require the distance between ui and
each obstacles point oj no smaller than a minimum distance ri:

cjointij = ri − ||ui − oj || ≤ 0 (13)

We consider link i in a serial robot as a straight, thin, and long bar or similar
shapes that start from point ui and ends at ui+1. As the collision avoidance
constraint for link i, we enforce the half sum of ||ui − oj || and ||ui+1 − oj || to
be equal or greater than a fixed distance ai:

clinkij = 2ai − (||ui − oj ||+ ||ui+1 − oj ||) ≤ 0 (14)

Eq. 14 indicates that the occupation space of link i is bounded with a prolate
spheroid, whose foci are ui and ui+1 and semi-major axis is ai. Let c(ω) be the
vector containing cjointij and clinkij , the collision avoidance constraint is:

c(ω) ≤ 0 (15)

3.4 End Effector Pose Objective

The end effector pose objective describes the error between the transformation
of the end effector frame and the goal frame. We formulate this objective with
the distance between a set of distinct points attached on the end effector frame
and the goal frame. We attach ue on the origin of Fe. We then attach a set of
distinct points wep and vep on xe and ye, respectively. The position of these
points could be computed from Te:

wep = kpxe + ue, vep = qpye + ue (16)

where xe and ye can be extracted from Te. kp, qp ∈ R and kp, qp ̸= 0. Similarly,
we attach u∗, w∗

i , and v∗
i on the goal frame F∗. Fig. 1d shows an example when

n1 = n2 = 2.
We arrange the points attached on Fe into matrix Ue = [ue,we1, ...,wen1,

ve1, ...,ven2]
⊤ ∈ R(n1+n2+1)×3 and goal points u∗

p into matrix U∗ = [u∗,w∗
1, ...,
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w∗
n1, v∗

1, ...,v
∗
n2]

⊤ ∈ R(n1+n2+1)×3 . The end effector pose objective can be for-
mulated as:

J(ω) =
1

2

∑(
(Ue −U∗)⊤(Ue −U∗)

)
(17)

Besides the 6-DoF end effector pose objective, our method can also handle
5-DoF objective by setting n2 = 0 or 3-DoF objective by setting n1 = n2 = 0.

4 Algorithm

So far, we have unified the formulation of kinematic chain, joint limit constraints,
collision avoidance constraints and end effector pose objective into Euclidean
distance representations. In this section, we introduce our method of solving the
distance-based constrained IK.

We formulate the constrained IK as a local optimization problem over the
slack variable ω introduced in Sec. 3.2:

min
ω

J(ω) =
1

2

∑
(Ue −U∗)⊤(Ue −U∗)

s.t. Ue = FK(ω)

c(ω) ≤ 0

(18)

where FK is the forward kinematics computation.
The equality constraint, projecting from ω to the end effector pose via the

kinematic chain, can be directly incorporated into J(ω) by replacing Ue with
FK(ω). Then, we convert the inequality constraint into penalty terms to form
an augmented Lagrangian function Lρ. Let c′(ω) = max(0, c(ω)), the augmented
Lagrangian function is:

Lρ(ω) = J(ω) + µ⊤c′(ω) +
ρ

2
c′(ω)⊤c′(ω) (19)

where µ is the Lagrangian multiplier and ρ is the adjust penalty parameter. The
constrained IK problem is formulated as finding ω∗ ∈ RM ′

such that
ω∗ = argminLρ(ω) (20)

4.1 Forward Rollout

The forward rollout procedure involves the computation of the forward kine-
matics FK and objective Lρ. The forward kinematics computes the position of
points attached on joints U given motion variable ω.

As shown in Fig. 1e and Algorithm 1, the forward rollout is computed prop-
agatively along the direction of the kinematic chain from the base to the end
effector. Fig. 1e illustrates a diagonal matrix of distances between points at-
tached on robot. Each element represents the distance between points at the
row and column indices. The propagation starts from u0, w0, and v0, which are
assumed to be pre-known since they are typically stationary relative to the world
frame. We can collect the set of ui, wi, and vi as a unit, then the forward rollout
solves for the ith unit and then moves to the (i + 1)th unit. Additionally, the
computation of the variables in the ith unit reuses the pre-computed variables
in the (i− 1)th unit.
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Algorithm 1 Forward Rollout
1: T0 ← Tworld

2: for i = 1, 2, ...,M do
3: Li ← s(ωi) ▷ Eq. 12a
4: i−1Ti ← g(Li) ▷ Eq. 4
5: Ti ← Ti−1 · i−1Ti ▷ Eq. 5a
6: Compute ui from Ti ▷ Eq. 5b
7: end for
8: ue ← uM

9: Compute wep1 and vep2 for p1 =
1, ..., n1 and p2 = 1, ..., n2.

10: Ue ← [ue,ue1, ...,uen]
⊤. ▷ Eq. 16

11: Compute J from Ue and U∗.▷ Eq. 17

12: Lρ ← J
13: for j = 1, 2, ..., N do
14: for i = 1, 2, ...,M do
15: cjointij ← ri − ||ui − oj ||▷ Eq. 13
16: clinkij ← 2ai − (||ui − oj || +
||ui+1 − oj ||) ▷ Eq. 14

17: Lρ ← Lρ+µijc
joint
ij +µijc

link
ij +

ρ
2
cjointij

2
+ ρ

2
clinkij

2
▷ Eq. 19

18: end for
19: end for
20: return Lρ

After FK computation, we compute the augmented Lagragian Lρ, which is
composed of end effector pose objective J(ω) and collision penalty c(ω). J(ω) is
computed with Ue(ω) obtained from FK. For collision penalties, we loop through
every robot-attached point ui and obstacle point oj to compute cjointij and clinkij .

4.2 Jacobian Computation

The Jacobian ∇ωLρ is the derivatives of augmented Lagrangian Lρ to the vari-
ables ω, which can be decomposed into the derivatives of end effector pose
objective ∇ωJ(ω) and collision penalties ∇ωc(ω):

∇ωLρ = ∇ωJ(ω) + µ∇ωc(ω) + ρc(ω)⊙∇ωc(ω) (21a)

∇ωJ(ω) =
dJ

dTe

dTe

dω
(21b) ∇ωc(ω) =

M∑
i=1

∂c

∂ui

dui

dω
(21c)

The key idea of Jacobian computation in our method is to propagate along
the backward direction of the kinematic chain leveraging reverse accumulation.
Notably, the Jacobian computation follows the forward rollout, allowing it to
reuse the results from the forward rollout. As shown in Algorithm 2, we first
compute the derivatives of collision penalties with respect to the position of
points attached to the robot (∂c/∂ui). Then, we compute the derivative of the
end effector pose objective to the end frame (∂J/∂Te), and finally compute the
derivatives of the position of the points to the variables (∂ui/∂ω). ∂c/∂ui in
Eq. 21c is computed with

∂c

∂ui
=

N∑
j=1

(
d

dui
cjointij +

∂

∂ui
clinkij +

∂

∂ui
clink(i+1)j

)
(22a)

d

dui
cjointij = (µij + ρcjointij )

ui − oj

||ui − oj ||
· 1

(
cjointij ≥ 0

)
(22b)

d

dui
clinkij = (µij + ρclinkij )

ui − oj

||ui − oj ||
· 1

(
clinkij ≥ 0

)
(22c)
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Algorithm 2 Jacobian Computation
1: for j = N,N − 1, ..., 1 do
2: for i = M,M − 1, ..., 1 do
3: if cjointij > 0 then
4: s1 ← (µij + ρcjointij )(ui − oj)/||ui − oj || ▷ Eq. 22b
5: Add [s⊤1 , 0]

⊤ to the last column of ∂Lρ/∂Ti. ▷ Eq. 22a
6: end if
7: if clinkij > 0 then
8: s2 ← (µij + ρclinkij )(ui − oj)/||ui − oj ||
9: Add [s⊤2 , 0]

⊤ to the last column of ∂Lρ/∂Ti. ▷ Eq. 22c
10: s3 ← (µ(ij + ρclink(i−1)j)(ui−1 − oj)/||ui−1 − oj || ▷ Eq. 22c
11: Add [s⊤3 , 0]

⊤ to the last column of ∂Lρ/∂Ti−1. ▷ Eq. 22a
12: end if
13: end for
14: end for
15: ∂Lρ/∂TM ← ∂J/∂Te ▷ Eq. 23
16: for i = M,M − 1, ..., 1 do
17: ∂Lρ/∂

i−1Ti ← T⊤
i−1 · (∂Lρ/∂Ti) ▷ Eq. 24b

18: ∂i−1Ti/∂Li ← g′(Li) ▷ Eq. 24c
19: ∂Li/∂ωi ← (Lmax

i − Lmin
i )σ(ωi)(1− σ(ωi)) ▷ Eq. 24d

20: ∂Lρ/∂ωi ←
(∑

(∂L/∂i−1Ti) · (∂i−1Ti/∂Li)
)
(∂Li/∂ωi) ▷ Eq. 24a

21: ∂Lρ/∂Ti−1 ← ∂Lρ/∂Ti−1 + (∂Lρ/∂Ti) ·i−1 T⊤
i ▷ Eq. 25

22: end for
23: ∇ωLρ ← [∂Lρ/∂ω1, ∂Lρ/∂ω2, ..., ∂Lρ/∂ωi, ..., ∂Lρ/∂ωM ]⊤

24: return ∇ωLρ

where the term ∂clink(i+1)j/∂ui is dropped when i = M . The term ui − oj and
||ui − oj || are already pre-computed in the forward rollout by Eq. 13. The term
1(·) is the indicator function, which equals to 1 when (·) is true otherwise 0. The
term ∂J/∂Te in Eq. 21b is computed with:

∂

∂Te
J =

[∑n1

p=1 kp(wep −w∗)
∑n2

p=1 qp(vep − v∗) 0 ue − u∗

0 0 0 1

]
(23)

where all the elements are already computed in Eq. 16 and Eq. 17. By computing
the derivatives of Lρ to the position of points attached on the robot, we can now
solve for ∂Lρ/∂ωi with:

∂

∂ωi
Lρ =

(∑ ∂Lρ

∂i−1Ti
· ∂

i−1Ti

∂Li

)
∂Li

∂ωi
(24a)

∂Lρ

∂i−1Ti
= T⊤

i−1 ·
∂Lρ

∂Ti
(24b)

∂i−1Ti

∂Li
=

dg(Li)

Li
=

 −1 − (1 − Li)
(
2Li − L2

i

)− 1
2 0 0

cα (1 − Li)
(
2Li − L2

i

)− 1
2 −cα 0 0

sα (1 − Li)
(
2Li − L2

i

)− 1
2 −sα 0 0

0 0 0 0

 (24c)

∂Li

∂ωi
= (Lmax

i − Lmin
i )

d

dωi
σ(ωi) = (Lmax

i − Lmin
i )σ(ωi)(1− σ(ωi)) (24d)
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Algorithm 3 Inverse Kinematics
1: ω∗

0 ← 0, µ ← 0, ρ ← 1, α ← 10,
clast ←∞.

2: for iteration k = 1, 2, ..., kmax do
3: ω∗

k ← L − BFGS(ω∗
k−1), where

Lρ is computed with Algorithm 1 and
∇ωkLρ is computed with Algorithm 2.

4: if max(c(ω∗
k)) < ctol or

max(c(ω∗
k)) ≥ βclast then

5: ω∗ ← ω∗
k

6: break
7: end if
8: clast ← max(c(ω∗

k))
9: µ← µ+ ρc(ω∗

k)
10: ρ← αρ
11: end for
12: Compute θ∗ with ω∗ ▷ Eq. 12a and

Eq. 26
13: return θ∗

where Ti−1 is already computed in Eq. 5a, σ(ωi) is already computed in Eq. 11,
and ∂Lρ/∂Ti can be recursively computed from joint i+1, collision penalty, and
end effector pose objectives:

∂Lρ

∂Ti
=

{
∂c
∂Ti

+
∂Lρ

∂Ti+1
·i T⊤

i+1 , i < M
∂c
∂Ti

+ ∂J
∂Te

, i = M
(25)

4.3 Inverse Kinematics

We first solve Eq. 19 for a local optimal solution ω∗, and then compute θ∗ from
ω∗. As shown in Algorithm 3, our method iteratively minimize Lρ and update
the Lagrangian multiplier µ and ρ. Within each loop k, we use quasi-Newton
method to solve for argminLρ. The forward rollout and Jacobian computation
are implemented following Algorithm 1 and Algorithm 2, respectively. The Hes-
sian matrix are approximated with the Jacobian in quasi-Newton convention. In
our framework, we use L-BFGS as our quasi-Newton-based solver. After solving
for ω∗

k = argminLρ, we update Lagrangian multipliers µ and ρ. Our method
checks max(c(ω∗

k)) in every iteration and will terminate if max(c(ω∗
k)) < ctol or

max(c(ω∗
k)) ≥ βclast, where β < 1 and clast = max(c(ω∗

k−1)).
By obtaining ω∗, we solve θ∗ from ω∗. We first compute L∗

i using Eq. 12a,
and then compute θ∗i from L∗

i :

θ∗i =

⌈k⌉∑
m=1

arccos (1− L∗
im) + min (0, θmin

i ) (26)

4.4 Complexity Analysis
Our optimization framework is a combination of augmented Lagrangian opti-
mization and a quasi-Newton optimizer. It’s complexity is determined by the
complexity of a single iteration, which involves forward rollout (Algorithm 1),
Jacobian computation (Algorithm 2), Hessian approximation, and variable up-
date. The forward rollout and Jacobian computation propagate through all of the
points attached on the robot and the points of the obstacles, with a complexity
of O(M ′N). The complexity of Hessian approximation process in quasi-Newton
solver is O(M ′2). The complexity of variable update is O(M ′). In summary, the
complexity of the algorithm is O(M ′N +M ′2). Notably, M ′ is only determined
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(a) (b) (c) (d) (e)

Fig. 2: Visualization of experimental setups. (a)-(c) Robot arm platforms (UR10,
Franka, and KUKA). Their occupation space are composed of spheres or
spheroids in our formulation, visualized here as translucent hulls. (d) An example
of a KUKA robot in the environment with 9 random obstacles. (e) Visualization
of obstacles as point clusters.

by the DoF of the robot and joint limit, which is commonly small (less than
20). On the other hand, N depends on the environment and could reach hun-
dreds. Given a robot, the complexity of our algorithm is linear to the number of
cluttered points in the environment.

5 Experiments

In this section, we conduct experiments to demonstrate the efficiency, effective-
ness, and generalization capability of our algorithm.

5.1 Efficiency and Effectiveness Comparison

We conduct simulation experiments to benchmark the efficiency of our algorithm
in runtime, as well as its effectiveness in handling end effector pose objective,
collision avoidance constraints, and joint limit constraints.

We compare our method with three baselines, two of which are recent distance-
based IK algorithms. The first baseline is R-TR [13], a distance-geometric-based
IK algorithm that optimizes the distance matrix on the Riemannian manifold us-
ing the Trust Region method. The second baseline is Riemannian Conjugate Gra-
dient (R-CG), also introduced in [13], which uses the Conjugate Gradient method
to solve for the distance matrix. Since the baselines can only handle 3- or 5-DoF
end effector poses, we focus on 5-DoF end effector pose objectives throughout
the experiments. We further build a third baseline: a variant of PDO-IK, which
employs the same collision avoidance constraints, end effector pose objectives,
and optimization method as PDO-IK, but represents robot kinematics using joint
angles and uses Limited-memory Broyden–Fletcher– Goldfarb–Shanno-Bounded
(L-BFGS-B) [23] to directly handle joint limits as box constraints. We name this
third baseline “Angle-LBFGS-B”. For both PDO-IK and Angle-LBFGS-B, we set
β = 0.99.

We test all the methods on 3 popular commercial robot arms: UR10, KUKA-
IIWA, and Franka 4. UR10 has 6 DoFs and every joint can rotate from −360◦

4 UR10: https://www.universal-robots.com/. KUKA-IIWA: https://www.kuka.
com/. Franka: https://franka.de/.

https://www.universal-robots.com/
https://www.kuka.com/
https://www.kuka.com/
https://franka.de/
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Fig. 3: Experimental results on UR10, KUKA, and Franka. The x-axis are the
number of obstacles. The y-axis are success rate, logarithm of runtime in seconds,
joint limit violation rate, collision rate, and end effector objective failure rate.

to 360◦. KUKA-IIWA and Franka have 7 DoFs and have tighter joint limits. As
mentioned in Sec. 3.3, our collision constraint formulation takes the occupation
space of joints and links as sphere and spheroid, respectively. The occupation
space of these robots is shown in Fig.2a-c.

We set up various scenarios with 1 to 9 random obstacles. For each number of
obstacles and each robot, we generate 200 scenarios for experiments. We sample
different objects form YCB dataset as obstacles [3], with their corresponding
point clouds also provided. An example of an experiment scenario is shown
in Fig.2d. The environment generation and method implementation for each
scenario follow these steps:

1. Place the robot on the origin of the world frame, randomly sample a config-
uration θrand from joint space C from a uniform distribution over the joint
angle limits. Record the end effector pose as the target.

2. Randomly generate obstacles that are collision free to θrand. The position
of the obstacles are randomly sampled from a uniform distribution within
a specific range. The range of the x-, y-, and z-coordinates of the center of
the objects are [−0.6, 0.6], [−0.6, 0.6], and [0, 1.2] meters, respectively. The
objects are randomly scaled with ratio of [1, 3]. We use Moveit! collision
checker 5 to check for collision. The point cloud of the obstacle is downsam-
pled with the Voxel Grid filter from the Point Cloud Library (PCL) 6 with
voxel grid leaf size equals to 0.1m. Examples of obstacles and their point
cloud are shown in Fig. 2e. The average amount of points in scenarios of 1
to 9 obstacles are 24, 47, 68, 87, 101, 110, 122, 130, and 136, respectively.

5 Moveit!: https://moveit.ros.org/.
6 Point Cloud Library: https://pointclouds.org/.

https://moveit.ros.org/
https://pointclouds.org/
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Fig. 4: Convergence precision experiments results.

3. Run each IK method given the target end effector pose and clusters of points.
We use θ0 = 0 as initialization. We set time limits of 60 seconds for each
algorithm. All IK algorithms are implemented in Python on a desktop com-
puter with Intel Core i9 CPU with 128 GB RAM.

We report the success rate Pscs, which is the percentage of experiments that
satisfies the following criteria: (1) The solution is reported within the time limit.
(2) The solution is collision-free to the obstacles detected by Moveit! collision
checker. (3) The end effector position error ϵd and rotation error ϵθ are less than
0.01 m and 0.01 rad, respectively. (4) The joint limit violation is within 1% of
the joint angle limit range. In addition, we also report joint limit failure rate
Pjoint, collision rate Pcol, and end effector pose failure rate Pee, which are the
proportion of the number of solutions that fails to satisfy criteria (2), (3), and
(4), respectively, to the number of total solutions generated. The logarithm of
runtime log10 T where T is in seconds, is also reported for all IK methods.

The experiment results are shown in Fig.3. For all scenarios and robot plat-
forms, our method achieves a comparable or higher success rate than the base-
lines, especially when the amount of obstacles in the environment gets higher.
Moreover, our method runs up to two orders of magnitude faster than the pre-
vious distance-based methods. Our method also achieves lower or comparable
Pee compared to previous distance-based methods. The collision rate Pcol of our
method and the baselines are similar. Our method has 0 joint limit failure rate
since our joint angle is strictly bounded with the squashing function. Although
Angle-LBFGS-B has comparable or slightly faster speed than PDO-IK due to
their similar approaches, it can only achieve a comparable success rate to PDO-
IK on the UR10, which has 6 DoFs, with wide joint limits, and a simple kinematic
chain. On robots with 7 DoFs with tight joint limits and more complex kine-
matic chains, such as the Franka, Angle-LBFGS-B performs much worse than
PDO-IK. This comparison shows the advantage of distance-based representation
over conventional angle-based representation.
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5.2 Solution Accuracy Comparison

We check the solution accuracy with the optimal solution achieved among PDO-
IK, R-TR, and R-CG. The solution accuracy measures how close the algorithm’s
final solution is to the true optimal solution. In this section, we compare the
solution accuracy of PDO-IK, R-TR, and R-CG by counting the proportion of
end effector objectives that satisfies different tolerance levels of ϵd and ϵθ.

Fig. 4 illustrates the success rate under different tolerance levels of ϵd and
ϵθ on KUKA and UR10 when the number of obstacles is 1 and 3. Our method
remains a high and relative consistent success rate when the tolerance varies
from 10−4 to 10−1. The success rate of R-TR and R-CG, however, significantly
drop when the tolerance is is below 10−3 and 10−2, respectively. This experiment
shows that PDO-IK achieves higher solution accuracy than the baselines.

5.3 Humanoid Robot Avoiding Dynamic Obstacle

We further apply our algorithm on humanoid robot (Fig. 5). In this experiment,
we let a can (002_master_chef_can from YCB dataset, its downsampled point
cloud contains 168 points) fly to the H1 robot 7 in a pre-defined trajectory. The
H1 robot is a humanoid robot that contains 19 DoFs (5 on each leg, 4 on each
arm, 1 on the torso). The H1 robot needs to avoid the can in real time and
remains its feet in a fixed position. Moreover, the CoM needs to maintain within
a feasible region to ensure the stability of the robot. In this experiment, the left
ankle of the robot is considered as the base link, which is fixed at [0.2, 0, 0]⊤ and
the right ankle is considered as the end effector. We fix the right ankle by setting
its objective position at u∗ = [−0.2, 0, 0]⊤.

7 Unitree Robotics: https://www.unitree.com/h1/

https://www.unitree.com/h1/
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For the robot stability, we add constraints to robot CoM position c ∈ R3:

[−0.16,−0.07, 0.8]⊤ < c < [0.16, 0.075, 0.94]⊤ (27)

where c is the weighted combination of every links’ center position:

c =

M∑
i=1

mici =

M∑
i=1

mi[Tmass,i(1, 4), Tmass,i(2, 4), Tmass,i(3, 4)]
⊤ (28a)

Tmass,i = Ti · iTmass,i (28b)
where mi is the weight of link i and iTmass,i is the transformation matrix of the
CoM of link i with respect to its own reference frame. After PDO-IK solves for
a feasible solution θ∗, we use a PD controller to control the motors to reach θ∗.

The algorithm is implemented in C++ on a laptop computer with AMD
Ryzen 7 CPU with 16GB RAM. Fig. 5a shows a series of key frames of the
simulation experiment on Mujoco [21]. The speed of the algorithm varies from
10 to 1500 Hz (Fig. 5b), indicating that the algorithm is capable for real-time
collision avoidance in dynamic environments.

The trajectory of the CoM is shown in Fig. 5c. The blue box is the feasible
region defined by Eq. 27. The CoM occasionally violates the CoM constraints
of no more than 0.01m but will quickly return to the feasible region thereafter.
Fig. 5d shows some additional demonstrations of the humanoid avoiding dynamic
obstacles (048_hammer and 011_banana from the YCB dataset).

6 Conclusions and Future Work

We present PDO-IK, a distance-based algorithm for constrained IK problems.
It addresses inefficiencies in previous distance-based methods by leveraging the
kinematic chain and new formulations for joint limit constraints, collision avoid-
ance constraints, and end effector objectives. Experiments show that our method
runs faster, can handle various constraints, and provide more accurate solutions
than recent distance-based methods. Finally, experiments on the H1 humanoid
robot demonstrate the generalization ability of our method and its usage for
collision avoidance in dynamic environments.

Our method has several limitations to be addressed in our future work. First,
the angle decomposition process introduces extra DoFs and reduces the speed
of the algorithm. Additionally, the collision avoidance constraints assume joints
are spherical and links are spheroidal, which might poorly approximate complex
robot shapes. Better approximations could be achieved by attaching more points
to the robot at the cost of potentially higher computational burden. Moreover,
this paper doesn’t consider robot self-collision but we believe such constraints
can be achieved by constraining the distances between points attached on the
robot. Finally, tests on different types of robot structures can be conducted to
further broaden the application of the algorithm.
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