
Loosely Synchronized Rule-Based Planning for
Multi-Agent Path Finding with Asynchronous Actions

Shuai Zhou2*, Shizhe Zhao1, Zhongqiang Ren1,3†

1UM-SJTU Joint Institute, Shanghai Jiao Tong University, China
2SHIEN-MING WU School of Intelligent Engineering, South China University of Technology, China

3Department of Automation, Shanghai Jiao Tong University, China
davidzhou718@gmail.com, {shizhe.zhao,zhongqiang.ren}@sjtu.edu.cn

Abstract

Multi-Agent Path Finding (MAPF) seeks collision-free paths
for multiple agents from their respective starting locations to
their respective goal locations while minimizing path costs.
Although many MAPF algorithms were developed and can
handle up to thousands of agents, they usually rely on the as-
sumption that each action of the agent takes a time unit, and
the actions of all agents are synchronized in a sense that the
actions of agents start at the same discrete time step, which
may limit their use in practice. Only a few algorithms were
developed to address asynchronous actions, and they all lie
on one end of the spectrum, focusing on finding optimal so-
lutions with limited scalability. This paper develops new plan-
ners that lie on the other end of the spectrum, trading off so-
lution quality for scalability, by finding an unbounded sub-
optimal solution for many agents. Our method leverages both
search methods (LSS) in handling asynchronous actions and
rule-based planning methods (PIBT) for MAPF. We analyze
the properties of our method and test it against several base-
lines with up to 1000 agents in various maps. Given a run-
time limit, our method can handle an order of magnitude more
agents than the baselines with about 25% longer makespan.

Code — https://github.com/rap-lab-org/public LSRP
Extended version — https://arxiv.org/abs/2412.11678

1 Introduction
Multi-Agent Path Finding (MAPF) computes collision-free
paths for multiple agents from their starting locations to
destinations within a shared environment, while minimiz-
ing the path costs, which arises in applications such as
warehouse logistics. Usually the environment is represented
by a graph, where vertices represent the location that the
agent can reach, and edges represent the transition be-
tween two locations. MAPF is NP-hard to solve to optimal-
ity (Yu and LaValle 2013), and a variety of MAPF plan-
ners were developed, ranging from optimal planners (Sharon
et al. 2015; Wagner and Choset 2015), bounded sub-optimal
planners (Barer et al. 2014; Li, Ruml, and Koenig 2021)

*Shuai Zhou conducted this research during his internship at
UM-SJTU Joint Institute at Shanghai Jiao Tong University.

†Corresponding Author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to unbounded sub-optimal planners (Okumura et al. 2022;
De Wilde, Ter Mors, and Witteveen 2013). These planners
often rely on the assumption that each action of any agent
takes the same duration, i.e., a time unit, and the actions of
all agents are synchronized, in a sense that, the action of each
agent starts at the same discrete time step. This assumption
limits the application of MAPF planners, especially when
the agent speeds are different or an agent has to vary its
speed when going through different edges.

To get rid of this assumption on synchronous actions,
MAPF variants such as Continuous-Time MAPF (Andrey-
chuk et al. 2022), MAPF with Asynchronous Actions (Ren,
Rathinam, and Choset 2021), MAPFR (Walker, Sturtevant,
and Felner 2018) were proposed, and only a few algorithms
were developed to solve these problems. Most of these al-
gorithms lie on one end of the spectrum, finding optimal or
bounded sub-optimal solutions at the cost of limited scal-
ability as the number of agents grows. To name a few,
Continuous-Time Conflict-Based Search (CCBS) (Andrey-
chuk et al. 2022) extends the well-known Conflict-Based
Search (CBS) to handle various action times and is able
to find an optimal solution to the problem. Loosely Syn-
chronized Search (LSS) (Ren, Rathinam, and Choset 2021)
extends A* and M* (Wagner and Choset 2015) to handle
the problem and can be combined with heuristic inflation
to obtain bounded sub-optimal solutions. Although these al-
gorithms can provide solution quality guarantees, they can
handle only a small amount of agents (≤ 100) within a run-
time limit of few minutes. Currently, we are not aware of
any algorithm that can scale up to hundreds of agents with
asynchronous actions. This paper seeks to develop new al-
gorithms that lie on the other end of the spectrum, trading
off completeness and solution optimality for scalability.

When all agents’ actions are synchronous, the existing
MAPF algorithms, such as rule-based planning (Erdmann
and Lozano-Perez 1987; Luna and Bekris 2011; De Wilde,
Ter Mors, and Witteveen 2013; Okumura et al. 2022), can
readily scale up to thousands of agents by finding an un-
bounded sub-optimal solution. However, extending them
to handle asynchronous actions introduce additional chal-
lenges: Rule-based planning usually relies on the notion of
time step where all agents take actions and plans forward
in a step-by-step fashion. When the actions of agents are
of various duration, there is no notion of planning steps,

1



and one may have to plan multiple actions for a fast mov-
ing agent and only one action for a slow agent. In other
words, an action with long duration of an agent may af-
fect multiple subsequent actions of another agent, which
thus complicates the interaction among the agents. To han-
dle these challenges, we leverage the state space proposed
in (Ren, Rathinam, and Choset 2021) where times are incor-
porated, and leverage Priority Inheritance with Backtracking
(PIBT) (Okumura et al. 2022), a recent and fast rule-based
planner, to this new state space. We introduce a cache mech-
anism to loosely synchronize the actions of agents during the
search, when these actions have different, yet close, starting
times. We therefore name our approach Loosely Synchro-
nized Rule-based Planning (LSRP).

We analyze the theoretic properties of LSRP and show
that LSRP guarantees reachability in graphs when the graph
satisfies certain conditions. For the experiments, we com-
pare LSRP against several baselines including CCBS (Andr-
eychuk et al. 2022) and prioritized planning in various maps
from a MAPF benchmark (Stern et al. 2019), and the re-
sults show that LSRP can solve up to an order of magnitude
more agents than existing methods with low runtime, de-
spite about 25% longer makespan. Additionally, our asyn-
chronous planning method produces better solutions, whose
makespan ranges from 55% to 90% of those planned by ig-
noring the asynchronous actions.

2 Problem Definition
Let set I = {1, 2, . . . , N} denote a set of N agents. All
agents move in a workspace represented as a finite graph
G = (V,E), where the vertex set V represents all possible
locations of agents and the edge set E ⊆ V ×V denotes the
set of all the possible actions that can move an agent between
a pair of vertices in V . An edge between u, v ∈ V is denoted
as (u, v) ∈ E and the cost of e ∈ E is a finite positive real
number cost(e) ∈ R+. Let vis, v

i
g ∈ V respectively denote

the start and goal location of agent i.
All agents share a global clock and start moving from vis

at t = 0. Let D(i, v1, v2) ∈ R+ denote amount of time (i.e.,
duration) for agent i to go through edge (v1, v2). Note that
different agents may have different duration when travers-
ing the same edge, and the same agent may have different
duration when traversing different edges.1

When agent i goes through an edge (v1, v2) ∈ E between
times (t1, t1 + D(i, v1, v2)), agent i is defined to occupy:
(1) v1 at t = t1, (2) v2 at t = t2 and (3) both v1,v2 within
the open interval (t1, t1 + D(i, v1, v2)). Two agents are in
conflict if they occupy the same vertex at the same time.
We refer to this definition of conflict as the duration conflict
hereafter. Fig. 1 provides an illustration.

Let πi denote a path from vis to vig via a sequence of
vertices v ∈ G. Any two vertices vik and vik+1 in πi are
either connected by edge (vi, vi+1) ∈ E or is a self-loop.

1As a special case, a self-loop (v, v), v ∈ V indicates a wait-in-
place action of an agent and its duration D(i, v, v) is the amount
of waiting time at vertex v, which can be any non-negative real
number and is to be determined by the planner.

Figure 1: (a) shows the occupation of vertices when an agent
traverses edge (v1, v2) between times (t1, t2) as shown by
the black arrow. Round brackets represent open intervals,
while square brackets represent closed intervals. The black
vertical lines mean the vertices are occupied during the time
range. (b) By duration conflict, the agents cannot move,
while in conventional MAPF (Stern et al. 2019), the agents
can move together clockwise or counter-clockwise.

Let g(πi(vis, v
i
g)) denote the cost of the path, which is de-

fined as the sum of duration of edges along the path. Let
π = (π1, π2, . . . , πn) represent a joint path of all agents,
and its cost is the sum of individual path costs of all the
agents, i.e., g(π) =

∑
i g(π

i).
The goal of the Multi-Agent Path Finding with Asyn-

chronous Actions (MAPF-AA) is to find a conflict-free joint
path π connecting vis, v

i
g for all agents i ∈ I , such that

g(π) reaches the minimum. This work seeks to develop al-
gorithms that can quickly solve MAPF-AA instances with
many agents by finding a (unbounded) sub-optimal solution.

Remark 1 The same definition of occupation and conflict
was introduced in (Ren, Rathinam, and Choset 2021), which
generalizes the notion of following conflict and cycle conflict
in (Stern et al. 2019), and is similar to the “mode” in (Oku-
mura, Tamura, and Défago 2021). Conventional MAPF usu-
ally considers vertex and edge conflicts (Sharon et al. 2015;
Okumura 2023), which differ from the duration conflict here.
Another related problem definition is MAPF with duration
conflict (denoted as MAPF-DC), which replaces the vertex
and edge conflict in MAPF with duration conflict. MAPF-
DC is a special case of MAPF-AA where the duration is the
same constant number for any agent and any edge.

3 Preliminaries
3.1 Priority Inheritance with Backtracking
Priority Inheritance with Backtracking (PIBT) plans the ac-
tions of the agents in a step-by-step manner until all agents
reach their goals. PIBT assigns each agent a changing prior-
ity value. In each step, a planning function is called to plan
the next action of the agents based on their current priorities.
This planning function selects actions based on the individ-
ual shortest path to the goal of each agent, and actions to-
ward a location closer to the goal are first selected. When
two agents seek to occupy the same position, the higher-
priority agent is able to take this location, and pushes the
lower-priority agent to another less desired location. This
function is applied recursively, where the pushed agent is
planned next and inherits the priority of the pushing agent.
When all agents’ actions are planned for the current time
step, PIBT starts a new iteration to plan the next time step.

2



PIBT guarantees that the agent with the highest priority
eventually reaches its goal, at which it becomes the lowest
priority agent. Therefore, each agent becomes the highest
priority agent at least once and is able to reach its goal at
some time step. PIBT requires that for each vertex v ∈ G,
there is a cycle in G containing v, so that PIBT can plan
all agents to their goals. Otherwise, PIBT is incomplete, i.e.,
PIBT may not be able to find a feasible solution even if the
instance is solvable. PIBT runs fast and can scale to many
agents for MAPF. Our LSRP leverages the idea of PIBT to
handle a large number of agents.

3.2 Loosely Synchronized Search
Loosely Synchronized Search (LSS) extends A* and M*-
based approaches to solve MAPF-AA by introducing new
search states that include both the locations and the action
times (i.e., as timestamps) of the agents. Similarly to A*,
LSS iteratively selects states from an open list, expands the
states to generate new states, prunes states that are in-conflict
or less promising, and adds remaining states to open for fu-
ture expansion, until a conflict-free joint path for all agents
is found from the starts to the goals. To expand a state, LSS
only considers the agent(s) i ∈ I with the smallest times-
tamps and plan its actions, which increases the timestamp
of agent i. In a future iteration, other agents j ̸= i will be
planned if the timestamp of j becomes the smallest. Plan-
ning all agents together may lead to a large branching fac-
tor and LSS leverage M* to remedy this issue. LSS is com-
plete and finds an optimal solution for MAPF-AA but can
only handle a relatively small amount of agents. Our LSRP
leverages the state definition and expansion in LSS to handle
asynchronous actions.

3.3 Other Related Approaches
Safe Interval Path Planning (SIPP) (Phillips and Likhachev
2011) is a single-agent graph search algorithm that can find a
path from start to goal with the minimum arrival time among
dynamic obstacles along known trajectories. SIPP can be
used together with priority-based planning to handle MAPF-
AA. Specifically, each agent is assigned with a unique pri-
ority, and the agents are planned from the highest priority to
the lowest using SIPP, where the planned agents are treated
as dynamic obstacles. This priority-based method is used as
a baseline in our experiments.

Additionally, CCBS (Andreychuk et al. 2022) is a two-
level search algorithm that can be used to handle MAPF-
AA. CCBS is similar to CBS (Sharon et al. 2015) for MAPF.
The high-level search detects conflicts between any pair of
agents, and resolves conflicts by generating constraints that
forbid an agent from using certain vertices within certain
time ranges. The low-level search uses SIPP to plan a single-
agent path subject to the constraints added by the high-level.
CCBS iteratively detects conflicts on the high-level and re-
solves conflicts using the low-level search until no conflict
is detect along the paths. CCBS is guaranteed to find an op-
timal solution if the given problem instance is solvable. In
practice, CCBS can handle tens of agents within a few min-
utes (Andreychuk et al. 2022). This paper uses CCBS as an-
other baseline in the experiments.

Algorithm 1: LSRP, LSRP-SWAP

Input: graph G, starts {v1s , . . . , vns }, goals {v1g , . . . , vng }
Output: paths {π1, . . . , πn}
1: T ← {0}; ST ← {s0}; Φ← {}
2: ϵ0 ← INITPRIORITY()
3: ϵ← ϵ0
4: while T ̸= ∅ do
5: sprev ← ST .back()
6: if ∀i ∈ I, siprev.v = vig then
7: return POSTPROCESS(ST )
8: for i ∈ I do
9: if siprev.v = vig then ϵi ← ϵi0

10: else ϵi ← ϵi + 1
11: tmin ← T.pop()
12: Icurr ← EXTRACTAGENTS(I , tmin, sprev)
13: if T ̸= ∅ then
14: tnext ← T.top()
15: else
16: tnext ← tmin +mini∈I,e∈E D(i, e)

17: snext ← GET SNEXT(Φ, Icurr, sprev)
18: for i ∈ Icurr in descending order of ϵi do
19: if sinext = ∅ then
20: ASY-PUSH(i, {}, tmin, tnext,False)
21: (or ASY-PUSH-SWAP(i, {}, tmin, tnext,False))

22: ST .append(snext)
23: Add siprev.tv for i ∈ I to T

24: return failure

4 Method
4.1 Notation and State Definition
Let G = (V, E) = G×G× · · · ×G denote the joint graph,
the Cartesian product of N copies of G, where v ∈ V rep-
resents a joint vertex, and e ∈ E represents a joint edge
that connects a pair of joint vertices. The joint vertices cor-
responding to the start and goal vertices of all the agents
are vs = (v1s , v

2
s , · · · , vns ) and vg = (v1g , v

2
g , · · · , vng ) re-

spectively. A joint search state (Ren, Rathinam, and Choset
2021) is s = (s1, s2, . . . , sn), where si is the individual state
of agent i, which consists of four components: (1) p ∈ V , a
(parent) vertex in G, from which the agent i begin its action;
(2) v ∈ V , a vertex in G, at which the agent i arrives; (3) tp,
the timestamp of p, representing the departure from p; (4)
tv , the timestamp of v, representing the arrival time at v.

An individual state si = (p, v, tp, tv) describe the location
occupied by agent i within time interval [tp, ts] with a pair
of vertices (p, v). Intuitively, an individual state is also an
action of agent i, where i moves from vertex p to v between
timestamps tp and tv . For the initial state s0, we define p =
v = vis and tp = tv = 0,∀i ∈ I . Let ϵ = (ϵ1, ϵ2, · · · , ϵN )
denote the priorities of the agents, which are positive real
numbers in [0, 1]. In this paper, we use the dot operator (.) to
retrieve the element inside the variable (e.g. si.tv denote the
arrival time tv of agent i in the individual state si).

4.2 Algorithm Overview
LSRP is shown in Alg. 1. Let T denote a list of timestamps,
and LSRP initializes T as a list containing only 0, the start-

3



ing timestamp of all agents. Let ST denote a list of joint
states, which initially contains only the initial joint state. Let
Φ denote a dictionary where the keys are the timestamps and
the values are joint states. Φ is used to cache the planned ac-
tions of the agents and will be explained later. Then, LSRP
initializes the priorities of the agents (Line 2), which can be
set in different ways (such as using random numbers).

LSRP plans the actions of the agents iteratively until all
agents reach their goals. LSRP searches in a depth-first fash-
ion. In each iteration, LSRP retrieves the most recent joint
state that was added to ST , and denote it as sprev (Line 5). If
all agents have reached their goals in sprev , ST now stores a
list of joint states that brings all agents from vs to vg . LSRP
thus builds a joint path out of ST , which is returned as the so-
lution (Line 7), and then terminates. Otherwise, LSRP resets
the priorities of the agents that have reached their goals, and
increase the priority by one for agents that have not reached
their goals yet (Lines 9-10).

Then, LSRP extracts the next planning timestamp tmin

from T , which is the minimum timestamp in T , and extracts
the subset of agents Icurr ⊆ I so that for each agent i ∈ I ,
its arrival timestamp tiv in sprev is equal to tmin (Line 12).
Intuitively, the agents in Icurr needs to determine their next
actions at time tmin. Here, tnext is assigned to be the next
planning timestamp in T if T is not empty. Otherwise (T is
empty), tnext is set to be tmin plus the a small amount of
time (Lines 13-16). To generate the next joint state based on
sprev , LSRP first checks if the actions of agents in Icurr have
been planned and cached in Φ. If so, these cached actions are
used and the corresponding individual states are generated
and added to snext (Line 17). For agents without cached ac-
tions (Line 19), LSRP invokes a procedure ASY-PUSH to
plan the next action for that agent.

Finally, the generated next joint state snext is appended
to the end of ST , and the arrival timestamp siprev.tv of each
agent i ∈ I is added to T for future planning.

4.3 Recursive Asynchronous Push
ASY-PUSH takes the following inputs: i, the agent to be
planned; ban, a list of vertices that agent i is banned from
moving to; t, the current timestamp; tnext, the next times-
tamp; and bp, a boolean value indicating if agent i is being
pushed away by other agents, which stands for “be pushed”.

At the beginning, ASY-PUSH identifies all adjacent ver-
tices C that agent i can reach from its current vertex in G.
These vertices in C are sorted based on its distance to the
agent’s goal (Line 1-2, Alg.2). Then, for each of these ver-
tices from the closest to the furthest, ASY-PUSH checks
whether the agent can move to that vertex without running
into conflicts with other agents, based on the occupancy sta-
tus of that vertex (Line 7-27, Alg.2). ASY-PUSH stops as
soon as a valid vertex (i.e., a vertex that is unoccupied or can
be made unoccupied through the push operation) is found.
Specifically, between lines 7-27 in Alg.2, ASY-PUSH may
run into one of the following three cases:
Case 1 Occupied (Line 8): The procedure OCCUPIED re-
turns true if either one of the following three conditions hold.
(1) Vertex v is inside ban, which means agent i cannot be
pushed to v. (2) v is occupied by another agent i′ and i′

Algorithm 2: ASY-PUSH,ASY-PUSH-SWAP

Input: i, ban, t, tnext, bp
Notation: vi ← siprev.v

1: C ← Neigh(vi) ∪ {vi}
2: sort C in increasing order of dist(u, vig) where u ∈ C
3: j ← SWAP-REQUIRED-POSSIBLE(i, C[0])

4: if j ̸= ∅ then C.reverse()

5: if ϵi > ϵn(n ̸= i)∀n ∈ I then
6: C.move(vi, 1) ▷ Move vi to second
7: for v ∈ C do
8: if OCCUPIED(v, snext, ban, bp) then continue
9: k ← PUSH-REQUIRED()

10: if k ̸= ∅ then
11: ban.append(vi)
12: tiwait ← ASY-PUSH(k,ban, t, tnext,True)
13: if tiwait = ∅ then continue
14: WAITANDMOVE(i, v, tiwait, snext,Φ)
15: timove ← tiwait +D(i, vi, v)

16: if (!bp) ∧ v = C[0] ∧ j ̸= ∅ ∧ sjnext = ∅ then
17: WAITANDMOVE(j, vi, timove, snext,Φ)

18: return timove

19: if v = vi then
20: sinext ← state(vi, v, t, tnext)
21: return
22: timove ← t+D(i, vi, v)
23: sinext ← state(vi, v, t, timove)

24: if (!bp) ∧ v = C[0] ∧ j ̸= ∅ ∧ sjnext = ∅ then
25: WAITANDMOVE(j, vi, timove, snext,Φ)

26: return timove

27: return ∅

Algorithm 3: WAITANDMOVE

Input: i, v, tiwait, sprev, snext,Φ
Notation: vi ← siprev.v

1: sinext ← state(vi, vi, t, tiwait)
2: timove ← tiwait +D(i, vi, v)
3: Add state(vi, v, tiwait, t

i
move) to Φ

4: return

either has been planned or i′ is not in Icurr. (3) bp is true
(which indicates that agent i is to be pushed away) and v is
the vertex currently occupied by agent i (i.e., v = siprev.v).
When OCCUPIED returns true, agent i cannot move to v.
Then, ASY-PUSH ends the current iteration of the for-loop,
and checks the next vertex in C.
Case 2 Pushable (Line 9-18): ASY-PUSH invokes PUSH-
REQUIRED to find if vertex v is occupied by another agent
k that satisfy the following two conditions: (1) k ∈ Icurr
and (2) the action of k has not yet been planned (Line 9).
If no such a k is found, ASY-PUSH goes to the “Unoccu-
pied” case as explained next. If such a k is found, the cur-
rent vertex vi occupied by agent i is added to the list ban
so that agent k will not try to push agent i in a future re-
cursive call of ASY-PUSH, which can thus prevent cyclic
push in the recursive ASY-PUSH calls. Then, a recursive

4



call of ASY-PUSH on agent k is invoked and the input ar-
gument bp is marked true, indicating that agent k is pushed
by some other agent. bp is also used in SWAP-related proce-
dures (Line 3-4,16-17 and 24-25), which will be explained
later. This recursive call returns the timestamp when agent k
finished its next action, and agent i has to wait till this times-
tamp, which is denoted as tiwait. Given tiwait, the procedure
WAITANDMOVE is invoked to add both the wait action and
the subsequent move action of agent i into Φ, the dictionary
storing all cached actions. Then, the timestamp timove when
agent i reaches v is computed (Line 18 ) and returned.
Case 3 Unoccupied (Line 19-26): Vertex v is valid for agent
i to move into and a successor individual state sinext for
agent i is generated (Line 23). Then, ASY-PUSH returns
the timestamp timove when agent i arrives at v (Line 26).

Cache Future Actions During the search, Φ caches the
planned actions of the agents, and is updated in Alg.3, which
takes an agent i ∈ I , a vertex v ∈ V , the timestamp
tiwait that agent i needs to wait before moving as the in-
put. Alg.3 first generates the corresponding individual state
sinext where agent i waits in place till tiwait(Line 1), and then
calculates time timove when agent i reaches v after the wait
(Line 2). Finally, the future individual state corresponding to
the move action of agent i from vi to v between timestamps
[tiwait, t

i
move] is generated and stored in Φ.

Toy Example Fig. 2 shows an example in an undirected
graph with three agents I = {1, 2, 3} corresponding to the
yellow, blue, and red circles. The duration for the agents to
go through any edge is 1, 2, 3 respectively. S0 shows the
initial individual states. The initial priorities of the agents are
set to {0.99, 0.66, 0.33} respectively. At timestamp tmin =
0, Icurr includes all three agents. LSRP calls ASY-PUSH
based on their priorities from the largest to the smallest.

LSRP calls ASY-PUSH with i = 1, and agent 1 attempts
to move to vertex D as D is the closest to its goal. D is
now occupied by agent 2, which leads to a recursive call on
ASY-PUSH with i = 2 to check if agent 2 can be pushed
away (Line 12, Alg.2). In this recursive call on i = 2, agent
2 tries to move to vertex B as B is the closest to its goal,
which is occupied by agent 3, and another recursive call
on ASY-PUSH with i = 3 is conducted. In this recursive
call on ASY-PUSH with i = 3, agent 3 finds its goal ver-
tex C is unoccupied, and s3next = (B,C, 0, 3) is generated,
which is shown in Fig. 2(b). Here, the returned timestamp
is t3move = 3, which is the timestamp when agent 3 arrives
vertex C. Then, the call on ASY-PUSH with i = 2 gets this
returned timestamp and set it as t2wait = 3, the timestamp
that agent 2 needs to wait till before moving to vertex D. An
individual state s2next = (D,D, 0, 3) is generated, which is
s2next in Fig. 2(b), and another individual state (D,B, 3, 5) is
created and stored in Φ, which corresponds to the move ac-
tion of agent 2 from D to B. Finally, the call on ASY-PUSH
with i = 1 receives t1wait = 5, which is the timestamp that
agent 1 has to wait till before moving to D. An individual
state s1next = (E,E, 0, 5) is generated, corresponding to the
wait action of agent 1, which is s1next in Fig. 2(b). Then an-
other individual state (E,D, 5, 6) is also created and stored
in Φ as the future move action of agent 1. Finally, all three

Figure 2: A toy example illustrating LSRP.

agents are planned and snext is added to ST . The arrival
timestamps tv in any individual state in snext (i.e., {3,5})
are added to T for future planning.

In the next iteration of LSRP, the planning timestamp is
tmin = 3 and Icurr is {2, 3}, as agents i = 2, 3 ends
their previous actions at t = 3. To plan the next action of
agents 2, 3, LSRP retrieves the move action from Φ and set
s2next = (D,B, 3, 5) for agent 2, which is s2next shown
in Fig. 2(c). Agent 3 has no cached action in Φ and is
planned by calling ASY-PUSH. Since agent 3 is at its goal,
ASY-PUSH set agent 3 wait in vertex C until tnext by set-
ting s3next = (C,C, 3, 5) (Line 19-21,Alg.2). All agents in
Icurr are now planned, and ST ,T are updated. LSRP ends
this iteration and proceeds. The third planning timestamp is
tmin = 5 and Icurr is {1, 2, 3}. LSRP plans in a similar
way, and the movement of the agents is shown in Fig. 2(d).
The last timestamp is tmin = 6. In this iteration, in sprev ,
all agents have reached their goals and LSRP terminates.

4.4 Relationship to PIBT and Causal PIBT
LSRP differs from PIBT in the following three aspects:
First, PIBT solves MAPF where vertex and edge conflicts
are considered. When one seeks to use PIBT-like approach
to solve MAPF-DC (with duration conflict), the wait ac-
tion may need to be considered in a similar way as LSRP
does. Specifically, when two agents i, j ∈ Icurr compete for
the same vertex v, the higher-priority agent starts to move
to v until the lower-priority agent is pushed away from v
and reaches a less desired vertex u. Here, the wait and the
move action of i are planned together and the move action is
cached in Φ for future execution. In PIBT, agent i can move
to v that is currently occupied by j as soon as j leaves v,
and there is no need for agent i to wait and cache the move
action. Second, different from MAPF-DC, MAPF-AA has
various durations. As a result, in each iteration (with plan-
ning timestamp t), LSRP plans for agents whose arrival time
is equal to t, instead of planning all agents as PIBT does.
Third, LSRP also introduces a swap operation for MAPF-
AA, which is demonstrated in Sec. 6.

Causal PIBT (Okumura, Tamura, and Défago 2021) ex-
tends PIBT to handle delays caused by imperfect execution
of the planned path for MAPF. In the time-independent plan-
ning problem, due to the possible delays, the action duration

5



Figure 3: An example of LSRP never terminating with only
ASY-PUSH. The blue and yellow agents will repeatedly
push each other but will never successfully swap their lo-
cations to reach their goals.

is unknown until the action is finished. Causal PIBT thus
plans “passively” by recording the dependency among the
agents during execution using tree-like data structure. When
one agent moves, Causal PIBT signals all the related agents
based on their dependency. In MAPF-AA, the action dura-
tion is known, and LSRP thus plans “actively” by looking
ahead into the future given the action duration of the agents,
and caches the planned actions when needed. The funda-
mental ideas in LSRP and Causal PIBT are related and sim-
ilar, but the algorithms are different since they are solving
different problems.

5 Analysis
This section discusses the compromise on completeness for
scalability in LSRP. We borrow two concepts from Causal-
PIBT (Okumura, Tamura, and Défago 2021):
• Strong termination: there is time point where all agents

are at their goals.
• Weak termination: all agents have reached their goals at

least once.
LSRP only guarantees weak termination under conditions.
In this section, the words ‘reach goal’ means that an agent
reaches its goal location but may not stay there afterwards.

Given a graph G, a cycle {v1, v2, . . . , vℓ, v1} is a special
path that starts and ends at the same vertex v1. The length
of a path (or a cycle) is the number of vertices in it. Given
a graph G and N agents, if there exists a cycle of length
≥ N + 1 for all pairs of adjacent vertices in G, then we call
this graph a c-graph. Intuitively, for a c-graph, LSRP guar-
antees that the agent with highest priority can push away
any other agents that block its way to its goal, and reaches
its goal within finite time. Once the agent reaches its goal, its
priority is reset and thus becomes a small value, the priority
of another agent becomes the highest and can move towards
its goal. As a result, all agents are able to reach their goals
at a certain time. Note that LSRP initializes all agents with
a unique priority, and all agents’ priorities are increased by
one in each iteration of LSRP, unless the agent has reached
its goal. Let i∗ ∈ I denote the agent with the highest pri-
ority when initializing LSRP. Let Dmax denote the largest
duration for any agent and any edge.
Theorem 1 In a c-graph, in LSRP, when i∗ ∈ Icurr, let v∗
denote the nearest vertex from vi∗g among all vertices in C,
then i∗ can reach v∗ within time N ·Dmax.

Sketch Proof 1 In each iteration, LSRP extracts the mini-
mum timestamp tmin from T , and at the end of the itera-
tion, the newly added timestamps to T must increase and
be greater than tmin. As a result, tmin keeps increasing as
LSRP iterates and all agents are planned. Now, consider the
iterations of LSRP where agent i∗ ∈ Icurr and is planned. In
ASY-PUSH, v∗ is check at first. If no other agent (k) occu-
pies v∗, then i∗ reaches v∗ with a duration that is no larger
than Dmax. Otherwise (i.e., another agent k occupies v∗),
agent i∗ seeks to push k to another vertices which may or
may not be occupied by a third agent k′. Since the graph is
a c-graph, there must be at least one unoccupied vertex in
the cycle containing the si∗prev.v, the current vertex occupied
by i∗. In the worst case, all agents are inside this cycle and
i∗ has to push all other agents before i∗ can reach v∗, which
takes time at most N · Dmax, where the agent moves to its
subsequent vertex in this cycle one after another.

Let diam(G) denote the diameter of G, the length of the
longest path between any pair of vertices in G.
Theorem 2 For a c-graph, LSRP (Alg. 1) returns a set of
conflict-free paths such that for any agent i ∈ I reaches its
goal at a timestamp t with t ≤ diam(G) ·N2 ·Dmax.
Sketch Proof 2 From Theorem 1, the agent with the highest
priority arrives v∗ within N · Dmax. So agent i arrives vig
within diam(G) ·N ·Dmax. Once agent i reaches vig , its pri-
ority is reset, which must be smaller than the priority of any
other agents, and another agent j gains the highest priority
and is able to reach its goal. This process continues until all
agents in I have gained the highest priority at least once,
and reached their goals. Thus, the total time for all agents
to achieve their goals is within diam(G) ·N2 ·Dmax.

6 Extension with Swap Operation
Since LSRP only guarantees weak termination under con-
ditions as aforementioned, for MAPF-AA in general, there
are instances where LSRP never terminates although the in-
stance is solvable. Fig. 3 shows an example. Assume the yel-
low agent has higher initial priority than the blue agent. The
yellow agent first pushes the blue agent until reaches goal D.
Then, the blue agent has higher priority and pushes the yel-
low agent until reaches goal E. As a result, these two agents
iteratively push each other and can never successfully swap
their locations.

Similar issues also appear in PIBT, which is addressed
by an additional swap operation (Okumura et al. 2022). In-
spired by this, we develop ASY-PUSH-SWAP (Alg. 2).
ASY-PUSH-SWAP takes the same input as ASY-PUSH,
and invokes a procedure SWAP-POSSIBLE-REQUIRED to
check if there exists an agent j that needs to swap location
with agent i. If such a j exists, ASY-PUSH-SWAP sorts
the successor vertices in C based on their distance to agent
j’s goal from the furthest to the nearest (Line 4, Alg. 1), and
plans the actions of i and j differently: if agent i can move
to the furthest vertex in C, and agent j is not planned, then j
moves to i’s current vertex after i vacates it (Line 16-17,24-
25 in Alg. 2). We refer to this variant of LSRP with swap
as LSRP-SWAP. Since LSRP-SWAP alters the order of ver-
tices in C, the analysis in Theorem 1 based on the nearest

6



Figure 4: Success rate and runtime results

Figure 5: SoC and makespan ratios of LSRP

vertex v∗ of an agent i∗ ∈ Icurr cannot be applied. Theo-
rem 1 and 2 thus may not hold for LSRP-SWAP.

SWAP-REQUIRED-POSSIBLE is similar to the concept of
the swap operation in PIBT (Okumura 2023). The main dif-
ference is that LSRP-SWAP must consider the duration con-
flict between agents rather than the vertex or edge conflict in
PIBT. Appendix provides more detail of LSRP-SWAP.

7 Experimental Results
Our experiments use three maps and the corresponding in-
stances (starts and goals) from a MAPF benchmark (Stern
et al. 2019). For each map, we run 25 instances with varying
number of agents N , and we set a 30-seconds runtime limit
for each instance. We make the grid maps four-connected,
and each agent has a constant duration when going through
any edge in the grid. This duration constant of agents vary
from 1.0 to 5.0. We implement our LSRP and LSRP-SWAP
in C++, and compare against two baselines. The first base-
line is a modified CCBS (Andreychuk et al. 2022). The orig-
inal CCBS implementation considers the shape of the agents
and does not allow different agents to have different dura-
tions when going through the same edge. We modified this
public implementation by using the duration conflict and al-
low different agents to have different duration. Note that the
constraints remain “sound” (Andreychuk et al. 2022), and

Figure 6: SoC and makespan ratios of LSRP-SWAP

Figure 7: Solution costs comparison with and without con-
sidering asynchronous actions.

the solution obtained is optimal to MAPF-AA. The second
baseline SIPP (see Sec. 3.3) adopts prioritized planning us-
ing SIPP (Phillips and Likhachev 2011) as the single-agent
planner. It uses the same initial priority as LSRP and LSRP-
SWAP. All tests use Intel i5 CPU with 16GB RAM.

7.1 Success Rates and Runtime
Fig. 4 shows the success rates and runtime of the algo-
rithms. Overall, it is obvious that our LSRP and LSRP-
SWAP can often handle more than an order of magni-
tude number of agents than the baselines within the time
limit with much smaller runtime. In particular, LSRP-SWAP
runs fastest and handles up to 1000 agents in our tests.
In sparse maps (Empty-16,Den520d), LSRP and LSRP-
SWAP both scale well with respect to N , and the reason
is that these graphs have many cycles that make the push
operation highly efficient when resolving conflicts between
the agents. In a cluttered environment (Warehouse), LSRP
has similar performance to SIPP while LSRP-SWAP outper-
forms both LSRP and SIPP, which shows the advantage of
the swap operation in comparison with LSRP without swap.

7.2 Solution Quality
Now we examine the solution quality of proposed methods.
We measure the solution quality using both sum of costs
(SoC) and makespan. We compare the solution quality (SoC
and makespan) of LSRP and LSRP-SWAP with baselines

7



(i.e., CCBS and SIPP) respectively. The ratios A/B used for
comparison are computed based on the instances from the
experiment in Sec. 7.1 that were successfully solved by both
planners A and B, where A is LSRP or LSRP-SWAP, and B
is CCBS or SIPP. The higher the ratio, the better the solution
quality of the baseline B.

As shown in Fig. 5 and 6, the median ratios is about 4x
in SoC, and 1.25x in makespan, which means LSRP and
LSRP-SWAP find more expensive solutions than the base-
lines. It indicates LSRP and LSRP-SWAP achieve high scal-
ability at the cost of solution quality, while the baselines usu-
ally find high quality solution with limited scalability. Note
that SIPP solves more instances than CCBS, and the ratios
for CCBS and SIPP are thus calculated based on different
sets of instances. So SIPP sometimes has a higher ratio than
the optimal planner CCBS on the map Empty-16.

7.3 Impact of Asynchronous Actions
This compares the solution costs of LSRP and LSRP-SWAP
when asynchronous actions are considered versus when they
are not. We use the same instances as in Sec. 7.1. When
ignoring the asynchronous actions, the duration constant of
all agents are set to 5.0, and the resulting MAPF-AA prob-
lem becomes MAPF-DC, where all agents have common
planning timestamps and can be planned in a step-by-step
manner. Note that even for MAPF-DC, due to the dura-
tion conflict, PIBT cannot be directly applied as discussed
in Sec. 4.4. As shown in Fig. 7, by considering the asyn-
chronous actions, the obtained solutions are usually 30% and
sometimes up to 75% cheaper than the solutions that ignore
the asynchronous actions. This result verifies the importance
of considering asynchronous actions during planning, espe-
cially when agents have very different duration.

8 Conclusion and Future Work
This paper develops rule-based planners for MAPF-AA by
leveraging both PIBT for MAPF and LSS to handle asyn-
chronous actions. The experimental results verify their abil-
ity to achieve high scalability for up to a thousand agents
in various maps, at the cost of solution quality. Future work
includes developing an anytime planner that can further im-
prove solution quality within the runtime limit for MAPF-
AA. Specifically, LSRP can be potentially extended to an
anytime version that is similar to LaCAM over PIBT (Oku-
mura 2023). This extension would allow LSRP to iteratively
optimize solution quality within the runtime limit.

Acknowledgements
This work was supported in part by the Natural Science
Foundation of China under Grant 62403313.

References
Andreychuk, A.; Yakovlev, K.; Surynek, P.; Atzmon, D.; and
Stern, R. 2022. Multi-agent pathfinding with continuous
time. Artificial Intelligence, 305: 103662.
Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Sub-
optimal variants of the conflict-based search algorithm for

the multi-agent pathfinding problem. In Proceedings of
the international symposium on combinatorial Search, vol-
ume 5, 19–27.
De Wilde, B.; Ter Mors, A. W.; and Witteveen, C. 2013.
Push and rotate: cooperative multi-agent path planning. In
Proceedings of the 2013 international conference on Au-
tonomous agents and multi-agent systems, 87–94.
Erdmann, M.; and Lozano-Perez, T. 1987. On multiple mov-
ing objects. Algorithmica, 2: 477–521.
Li, J.; Ruml, W.; and Koenig, S. 2021. Eecbs: A bounded-
suboptimal search for multi-agent path finding. In Proceed-
ings of the AAAI conference on artificial intelligence, vol-
ume 35, 12353–12362.
Luna, R.; and Bekris, K. E. 2011. Push and swap: Fast coop-
erative path-finding with completeness guarantees. In IJCAI,
volume 11, 294–300.
Okumura, K. 2023. Improving LaCAM for Scalable Even-
tually Optimal Multi-Agent Pathfinding. In Proceedings of
the Thirty-First International Joint Conference on Artificial
Intelligence (IJCAI).
Okumura, K.; Machida, M.; Défago, X.; and Tamura, Y.
2022. Priority Inheritance with Backtracking for Iterative
Multi-agent Path Finding. Artificial Intelligence, 103752.
Okumura, K.; Tamura, Y.; and Défago, X. 2021. Time-
Independent Planning for Multiple Moving Agents. Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
35(13): 11299–11307.
Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
path planning for dynamic environments. In 2011 IEEE In-
ternational Conference on Robotics and Automation, 5628–
5635. IEEE.
Ren, Z.; Rathinam, S.; and Choset, H. 2021. Loosely syn-
chronized search for multi-agent path finding with asyn-
chronous actions. In 2021 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 9714–9719.
IEEE.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial intelligence, 219: 40–66.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; et al.
2019. Multi-agent pathfinding: Definitions, variants, and
benchmarks. In Proceedings of the International Symposium
on Combinatorial Search, volume 10, 151–158.
Wagner, G.; and Choset, H. 2015. Subdimensional expan-
sion for multirobot path planning. Artificial intelligence,
219: 1–24.
Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2018. Ex-
tended Increasing Cost Tree Search for Non-Unit Cost Do-
mains. In IJCAI, 534–540.
Yu, J.; and LaValle, S. 2013. Structure and intractability of
optimal multi-robot path planning on graphs. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 27, 1443–1449.

8



Appendix
This section provides the details of LSRP-SWAP, which in-
volves first detecting whether two agents need to swap their
locations, and second planning the actions of the agents to
achieve the swap. LSRP-SWAP does not consider the du-
ration conflict between the agents in the detection process.
When planning the actions of the agents to achieve the swap,
the duration conflict is considered on Lines 17 and 25 in Alg.
2 to let the agents wait and then move when needed.

We introduce the following concepts, and some of them
have been mentioned earlier in the main paper.
SWAP: SWAP is introduced in (Okumura 2023). It is a pro-
cess where two agents exchange their current vertices in a
conflict-free manner through a sequence of actions.
PUSH: When i applies a PUSH operation on j, j moves to
another adjacent vertex that is not currently occupied by i,
then i moves to j’s current vertex.
PULL: This is the reverse operation of PUSH. When i ap-
plies a PULL operation on j, j moves to i’s current vertex
after i moves to another vertex.
OCCUPANT is a procedure that is used in Alg. 4 Line 3. It
takes (v, Icurr, sprev, snext) as the input, and seeks to find
an agent j ∈ Icurr that currently occupies v and has not yet
been planned, according to sprev and snext. If no such an
agent j exists, OCCUPANT returns an empty set.

SWAP-REQUIRED-POSSIBLE

The procedure SWAP-REQUIRED-POSSIBLE is called in
Alg. 2. Recall that vig denotes the goal vertex of agent i ∈ I ,
and C denotes a set of vertices that agent i can reach from
its current vertex, sorted according to the distance from vig
from the nearest to the furthest (Alg. 2).

Alg. 4 takes as input an agent i ∈ I and a vertex v in C
that is the closest to vig . Here, sprev, snext, Icurr are “global”
variables that are created on in Alg. 1 at the beginning of
each iteration of LSRP-SWAP. When v = vi (Line 2), it
guarantees that v = vi = vig , which means agent i reaches
the goal and i does not need to swap vertices with others
to get closer to vig , and Alg. 4 ends. Otherwise (v ̸= vi), it
invokes OCCUPANT to find an agent j to swap with.

If OCCUPANT finds an agent j (j ̸= ∅), it indicates that,
agent i can swap with agent j to get closer to vig . Then, it
invokes SWAP-CHECK to check if it is enough to eventually
swap agents i and j by just using a sequence of pull opera-
tions of agent j to agent i (Line 6). If SWAP-CHECK returns
true, it means that i, j cannot be swapped by just using a
sequence of pull operations. If SWAP-CHECK returns false,
it means that i, j can be swapped by just using a sequence
of pull operations, or agent i, j do not need to be swapped
at all. On Line 6, when SWAP-CHECK returns true, another
SWAP-CHECK is applied (Line 7) to check if agent i, j can
be swapped by letting agent i pull j. After SWAP-CHECK at
line 7 returns false, it means that using pull operations can
swap the agents. Agent j is thus returned and the procedure
ends (Line 8).

Subsequently, from Line 9 in Alg. 4, all adjacent vertices
of vi are iterated in arbitrary order. In each iteration, it tries

Algorithm 4: SWAP-REQUIRED-POSSIBLE

Input: i, v
Notation: i, j, k ∈ I
1: vi ← siprev.v

2: if v = vi then return ∅
3: j ← OCCUPANT(v, Icurr, sprev, snext)
4: if j ̸= ∅ then
5: vj ← sjprev.v

6: if SWAP-CHECK(vj , vi) then
7: if !SWAP-CHECK(vi, vj) then
8: return j

9: for u ∈ Neigh(vi) do
10: k ← OCCUPANT(u, Icurr, sprev, snext)
11: if k = ∅ ∨ skprev.v = v then continue
12: if SWAP-CHECK(vi, v) then
13: if !SWAP-CHECK(v, vi) then
14: return k
15: return ∅

Algorithm 5: SWAP-CHECK

Input: vi, vj

Notation: i, j ∈ I
1: vpl ← vi; vpd ← vj

2: while vpl ̸= vj do
3: n← (Neigh(vpl)).size()
4: for u ∈ Neigh(vpl) do
5: if u = vpd then
6: n− 1
7: continue
8: vpl ← u
9: if n >= 2 then return false

10: if n <= 0 then return true
11: if vpd = vjg then
12: if argmin(h(i, u))u∈Neigh(vpl) = vpd then
13: return true
14: vpd ← vpl

15: return true

to find an agent k ∈ Icurr that currently occupies a neigh-
bor vertex u of vi and is not planned yet (Line 10). If u is
unoccupied (i.e., k = ∅) or u = v (i.e., skprev.v = v), then
these cases are already handled by Lines 3-8, and the cur-
rent iteration of the for loop ends (Line 11). If k is found,
on Lines 12-13 in Alg. 4, SWAP-REQUIRED-POSSIBLE first
places agents k and i at vertices vi and v respectively, and
then invokes SWAP-CHECK twice (Line 12-13) to check
whether agent k needs to swap with agent i. The first call of
SWAP-CHECK checks whether agents k and i can swap their
locations by repeatedly letting agent k pulls agent i (Line
12). If the SWAP-CHECK on Line 12 returns true, which in-
dicates that swap operation cannot be done through agent k’s
pulling. Then, the second SWAP-CHECK is applied to check
if these two agents can be swapped by letting agent i pulls
agent k (Line 13). When the second SWAP-CHECK returns
false, it indicates that the pull operations can swap agents k
and i. Thus agent k is returned, indicating that agent i needs
to swap with agent k, and the procedure ends (Line 14).

9



If no such an agent j or k exists, it indicates that either
there is no need for agent i to swap with another agent, or
there is no way for agent i to swap with another agent. Thus
no agent is returned and Alg. 4 ends (Line 15).

SWAP-CHECK
SWAP-CHECK is a procedure to predict if a sequence of pull
operations can swap agent i and j. In SWAP-CHECK, let
vpl ← vi, where “pl” stands for pull, indicating that the
agent attempts to pull another agent, and let vpd ← vj ,
where “pd” stands for pulled, indicating that the agent is
pulled by another agent. To do this, we continuously let i
pull j (Line 3-14). Specifically, in each while iteration, all
neighbor vertices u of the current vertex vpl of the pulling
agent i are considered, and u is skipped if u is same as the
vertex vpd of the agent j that is pulled. If u is different from
vpd, then u is assigned to be the next vertex that the pulling
agent i will move to (Line 8). Then, the pulled agent moves
to the current vertex of the pulling agent (Line 14). This
while loop ends in four cases.

• (1) Agent i’s current vertex has at least 2 neighbor ver-
tices, and i can move to a vertex different from agent j’s
current vertex. In this case, swap is possible through pull
operations from agent i to agent j, and no other opera-
tions are required. SWAP-CHECK thus returns false (Line
9).

• (2) Agent i has no neighbor vertices besides agent j’s
current vertex. In this case, solely using push cannot
achieve swap, and pull operation is thus required. SWAP-
CHECK thus returns true (Line 10).

• (3) Let h(i, u) denote the shortest path distance from ver-
tex u to agent i’s goal vig . When the pulled agent j is
at its goal vertex vig (Line 11), if for the pulling agent
i, the nearest vertex to its goal vig among the neighbor
vertices Neigh(vpl) of i’s current vertex vpl is vpd (Line
12), SWAP-CHECK returns true, and swap operation is
required.

• (4) When vpl = vj , it indicates that agent i has pulled
agent j through a cycle (as defined in Sec. 5). It means
that the two agents have not swapped their vertices.
Therefore, additional pull operation is required, and true
is thus returned.

Toy Example
This section presents an example illustrating how LSRP-
SWAP solves the instance in Fig. 8 that requires swapping
the location of two agents in a tree-like graph. Let b denote
the blue agent and y denote the yellow agent. Initially, agent
y is assigned with the highest priority, while agent b is as-
signed with the lowest priority.

LSRP-SWAP for (a) As shown in Fig. 8, starting from
the initial state (Start), after a few push operations, LSRP-
SWAP reaches (a). In (a), agent y is at its goal vertex, so
its priority is reset, while agent b’s priority increases by 1.
Now agent b has the highest priority. LSRP-SWAP invokes

Figure 8: The two agents with color blue and yellow start
like (Start), going through a series of collision-free opera-
tions, and finally reach (Goal). The only feasible plan is to
swap the location of two agents via operations (a), (b) and
(c), where both agents need to move away from their goal lo-
cations. ASY-PUSH cannot find a feasible solution in this
case as it always lead to one of the agent moves towards to
its goal location.

ASY-PUSH-SWAP to plan for agent b and y in decreasing
order of priority, and agent b is planned at first.

In the ASY-PUSH-SWAP procedure of b, it invokes
SWAP-REQUIRED-POSSIBLE with input i = b, v = D,
since vertex D is the closest to b’s goal vertex (Line 3, Alg.
2). The procedure finds that agent y occupies D through OC-
CUPANT (Line 3, Alg. 4) and invokes SWAP-CHECK (Line
6, Alg. 4). Here, SWAP-CHECK predicts whether the two
agents can swap their locations by iteratively moving b to
y’s current vertex and moving y to another vertex. The input
to this SWAP-CHECK is that vi = B and vj = D, mean-
ing agent y is at vertex D and agent b is at vertex B. After
a few iterations, y arrives at vertex F and b arrives at vertex
E. y finds no vertex to move to other than vertex E that is
occupied by agent b (Line 10, Alg. 5). Therefore, additional
operation is required, and SWAP-CHECK returns true.

Then, SWAP-REQUIRED-POSSIBLE invokes another
SWAP-CHECK (Line 7, Alg.4) to predict whether two agents
can swap their locations by iteratively moving y to b’s cur-
rent vertex and moving b to another vertex. The input to this
SWAP-CHECK is that agent vi = D and vj = B, meaning
agent y is at vertex D and agent b is at vertex B. SWAP-
CHECK finds that agent b’s current vertex B has two occu-
pied vertices (A and C) that are different from y’s current
vertex D, and agent b can move to either of these two occu-
pied vertices. Swapping the location of both agents is thus
possible since B has two unoccupied neighbor vertices, and
SWAP-CHECK thus returns true (Line 9, Alg. 5).

After SWAP-CHECK returns true, SWAP-REQUIRED-
POSSIBLE ends and returns agent y (Line 8, Alg. 4), in-
dicating that agent y is able to swap vertices with agent
b. After SWAP-REQUIRED-POSSIBLE returns agent y, the
ASY-PUSH-SWAP procedure (Line 4, Alg. 2) reverses the
order of vertices in C to start the swapping process, and
b moves to C[0], which is the vertex C in this toy exam-

10



ple. Then, agent b pulls y to b’s current vertex (Line 24-25,
Alg. 2) as shown in (b). So far, agents b and y are planned,
and the LSRP-SWAP procedure for (a) in Fig. 8 ends.

LSRP-SWAP for (b) In the next iteration of LSRP-SWAP,
when planning for (b) in Fig. 8, agent b, y are both in Icurr
and are planned in decreasing order of priority. The pro-
cedure invokes ASY-PUSH-SWAP to plan for agent b at
first. Here, ASY-PUSH-SWAP seeks to move agent b to
vertex B and pushes agent y away, thus a recursive call to
ASY-PUSH-SWAP of agent y is conducted.

In this recursive call of ASY-PUSH-SWAP on agent y,
it invokes the SWAP-REQUIRED-POSSIBLE procedure with
input i = y, v = D, since D is the closest vertex to agent
y’s goal. No agent occupies D, so the procedure arrives at
Line 9 of Alg. 4. SWAP-REQUIRED-POSSIBLE (Line 9 in
Alg. 4) iterates all neighbor vertices of y’s current vertex B
(in arbitrary order) . For example, it checks vertex D and
A and finds they are unoccupied, which means the OC-
CUPANT procedure (Line 11 in Alg. 4) returns an empty
set for vertices D and A. Then, when iterating vertex C,
OCCUPANT finds that agent b occupies vertex C. SWAP-
REQUIRED-POSSIBLE then predicts the case that agent b
moves to vertex B after agent y moves to vertex D by in-
voking SWAP-CHECK with input vi = B, vj = D (Line
12, Alg. 4). In SWAP-CHECK, after a few while-loop iter-
ations, agent y reaches vertex F and has no neighbor ver-
tex to move to, swap is required and true is thus returned
(Line 10, Alg. 5). Then, SWAP-POSSIBLE is invoked with
input vi = D, vj = B. In this SWAP-POSSIBLE, it finds
that when agent b is at vertex B, b has 2 vertices to move
to, so a swap is possible , true is thus returned (Line 9,
Alg. 5). After SWAP-POSSIBLE, agent b is returned as the
return argument k, the agent to swap vertices with agent y,
and SWAP-REQUIRED-POSSIBLE ends (Line 14, Alg. 4). In
y’s ASY-PUSH-SWAP, its C is reversed, and C[0] = ver-
tex A. A is identified first; ASY-PUSH-SWAP finds that A
is unoccupied, thus moving y to A. Agent b moves to B after
y arrives at A, as shown in (c). Agents b and y are planned,
and the LSRP-SWAP procedure for (b) ends.

LSRP-SWAP for (c) Starting from (c), after a few while-
loop iterations of LSRP-SWAP, where push operation is ap-
plied in each iteration, agents b and y eventually reach their
goal vertices D and E, respectively. LSRP-SWAP success-
fully swaps the locations of the two agents.

11


