
CB-GCS: Conflict-Based Search on the Graph of Convex Sets for
Multi-Agent Motion Planning

Shizhe Zhao1, Allen George Philip2, Sivakumar Rathinam2, Howie Choset3, Zhongqiang Ren1†

Abstract— Multi-Agent Motion Planning (MAMP) seeks
collision-free trajectories for multiple agents from their re-
spective start to goal locations among static obstacles, while
minimizing some cost function over the trajectories. Existing
approaches include Mixed-Integer Programming (MIP) models,
graph-based and sampling-based methods, and trajectory opti-
mization, each with its own limitations. This paper introduces
CB-GCS, a new approach that develops a Conflict-Based Search
on the Graph of Convex Sets, to solve the MAMP. CB-
GCS plans trajectories for agents in continuous workspaces,
represented by time-augmented graphs of convex sets (T-GCS),
and resolves agent-agent conflicts by adding constraints to the
agents in that T-GCS. We test our CB-GCS against various
baselines, including a graph-based method that combines search
and sampling, as well as a Mixed-Integer Linear Program
(MILP) formulation. The numerical results show that solutions
found by our approach often have an optimality gap more than
10 times smaller than those found by the baseline when given
the same amount of runtime limit.

I. INTRODUCTION

This paper investigates a Multi-Agent Motion Planning
(MAMP) problem, which seeks collision-free trajectories for
multiple agents from their respective start to goal locations
among static obstacles, while minimizing the sum of trajec-
tory lengths of the agents subject to a time bound, within
which all agents must arrive at their goals. The agents have
speed limits and can move in any direction. This problem
is fundamental in robotics and arises in applications such
as logistics and surveillance. MAMP is challenging when
searching for high-quality obstacle-free trajectories that avoid
agent-agent collision [1], [2].

A. Related Work

MAMP can be posed as a mixed-integer linear program
(MILP) [3], which can be solved by using off-the-shelf
solvers such as Gurobi [5] or CPLEX [6]. When MAMP
involves nonlinear constraints (e.g., speed limits) or objec-
tives (e.g., Euclidean distance), the problem can no longer be
directly posed as a MILP. Although this nonlinearity can be
addressed through approximations [7], [8], it may result in
highly suboptimal solutions (Fig. 1a). Overall, most mixed-
integer programming (MIP) methods for MAMP primarily
focus on scalability and on handling complex constraints [9],
[10], rather than on solution quality (e.g. Euclidean distance).
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Fig. 1: An illustration of Multi-Agent Motion Planning.
Four square agents need to move in an open space to swap
their locations. (a) shows the trajectories obtained from the
existing MILP model [3] (b) shows the trajectories obtained
from KCBS [4] (c) shows the trajectories obtained from our
CB-GCS.

Graph-based methods [11]–[15] for MAMP typically in-
volve discretizing the workspace into a graph (such as a state
lattice or roadmap), and the agent’s action space into a set
of motion primitives (i.e., short trajectories connecting two
states), to iteratively plan trajectories from their start to goal
positions. These methods often find high-quality solutions
within the graph. However, generating a graph represen-
tation that accurately captures the obstacle-free space and
potential agent-agent interactions is challenging: too coarse
a discretization may result in no solution, while too fine a
discretization may lead to high computational burden.

Sampling-based methods [16], [17] address the aforemen-
tioned challenge by iteratively sampling from the state space
or the action space of the agents to find collision-free trajec-
tories. These methods quickly find an initial feasible solution
and can asymptotically converge to an optimal solution as
runtime approaches infinity. However, within a finite runtime,
the obtained solution quality can be poor without fine-tuning
the sampling process (Fig. 1b). Recent efforts seek to provide
solution quality guarantees with a finite number of samples,
which is limited to a small number of agents in practice due
to the heavy computational burden [16].

Trajectory optimization techniques are used to solve sim-
ilar multi-agent planning problems by planning the motion
of multiple agents with dynamics [18]–[20]. However, these
approaches often rely heavily on initialization and can get
trapped in local minima or even fail to find a feasible
solution in cluttered environments. Local collision avoidance
strategies iteratively plan and replan motion around the
robots, ensuring they avoid collision with each other in a
reactive and decentralized manner [21]–[23]. While these
approaches can readily scale to a large number of robots, they



offer no solution quality guarantee due to their myopic local
coordination strategy. Finally, other work combines different
techniques, such as search and sampling [4], [24], or search
and optimization [25], to integrate the benefits of different
classes of methods.

B. Contributions

This paper introduces Conflict-Based search on the Graph
of Convex Sets (CB-GCS), a new approach for MAMP that
requires no sampling of the workspace, is not sensitive to
initialization, and can provide near-optimal solutions within
a finite runtime limit. On one hand, CB-GCS leverages
Conflict-Based Search (CBS) for Multi-Agent Path Finding
(MAPF) problems, a technique that resolves agent-agent col-
lisions in a discretized graph representation of the workspace.
CB-GCS adapts the conflict resolution techniques from CBS
to continuous space to resolve agent-agent collisions. On the
other hand, CB-GCS leverages the recent concept of the
Graph of Convex Sets (GCS) [26], [27], which has been
used to plan paths in continuous spaces for a single robot
navigating among static obstacles. CB-GCS plans a path for
each agent in a time-augmented GCS, which includes an
additional time dimension, to avoid agent-agent conflicts.
Additionally, CB-GCS leverages anytime focal search [28] to
resolve agent-agent conflicts more efficiently while achieving
a bounded suboptimal solution for MAMP.

We test our CB-GCS and compare it against a recent
sampling-based method, KCBS [4], as well as a MILP
formulation [3]. The results show that CB-GCS can find
cheaper (better) solutions (i.e., up to 10x smaller optimality
gap) than the baseline at the cost of limited scalability.

II. PROBLEM STATEMENT

Let the index set I = {1, 2, . . . , n} denote a set of n
agents. Let W ⊂ R2 denote a bounded 2D workspace, that
is shared by all the agents. In W , there is a set of static
obstacles O = {o1, o2, . . . , os}, where each obstacle is a
polygon. For any point w ∈ W , let w(x) and w(y) denote
the x and y coordinate of w.

We assume the agents are squares with the same size
lw > 0. An agent’s location (also referred to as the agent’s
reference point) is determined by the position of the center
of its square. At any time t, let rit denote the reference point
of agent i at t, and let Ai

t denote the square area occupied by
agent i at t. Agents can move in any direction. Let si, gi ∈ W
denote the start and goal positions of agent i. All the agents
have the same speed limit, denoted as vmax ∈ R+, and share
the same global clock.

Each agent starts its motion at time t = 0 from si and ends
its motion at gi at a time that is no later than τmax ∈ R+,
where τmax is called the Time Constraint. The time dimen-
sion is uniformly discretized into a set of time points with a
step size of δt, and we let T = {0, 1, . . . , tmax} denote the
index of those time points, where tmax = τmax/δt.

Let πi = (ri0, r
i
1, . . . , r

i
tmax

) denote a path of agent i ∈ I ,
where ri0 = si and ritmax

= gi. The cost of a path g(πi) =

∑tmax−1
k=0 ||rik+1 − rik||2 is defined as its length1.

Problem 1 (TB-MAMP): The goal of the Time Bounded
Multi-Agent Motion Planning (TB-MAMP) problem is to
find a path πi for each agent i ∈ I such that for any t ∈ T ,
(i) each path πi is collision free with respect to the static
obstacles

∀o ∈ O, Ai
t ∩ o = ∅ (1)

(ii) there is no agent-agent collision along the trajectories for
each pair of agents

∀i ∈ I, ∀j ∈ I\{i}, Ai
t ∩Aj

t = ∅ (2)

and (iii) the sum of individual path costs,
∑
i∈I

g(πi), reaches

the minimum.

Remark 1: Arrival time and path length are two common
optimization objectives in the MAMP literature, used by
different methods. Search-based methods usually minimize
the sum of arrival times at the goals [11], [12], [14],
while sampling-based methods usually minimize the sum of
trajectory lengths [16], [29]. Some recent papers also seek
to combine both objectives as a multi-objective planning
problem [30]. This work seeks to minimize the sum of
trajectory lengths subject to a time constraint.

III. CB-GCS

CB-GCS consists of high-level and low-level planning.
The high-level planning leverages the ideas in CBS [31]
and introduces new concepts and techniques to resolve
conflicts in continuous spaces (Sec. III-A). The low-level
planning seeks a path for a single agent in a time-augmented
GCS subject to constraints added by the high-level planning
(Sec. III-B).

A. High-Level Planning

1) Conflicts and Constraints: For a time step t ∈ T , if
two agents collide (i.e., Ai(rit) ∩ Aj(rjt ) ̸= ∅), then we say
agents i, j are in conflict. Formally, let C = (i, j, Ai

t, A
j
t , t)

denote a conflict between agent i, j at time t. To resolve a
conflict C = (i, j, Ai

t, A
j
t , t), a set of four constraints Ω =

{ωi
lb, ω

j
lb, ω

i
ub, ω

j
ub} are generated as follows. Here, lb stands

for lower bound and ub stands for upper bound.
Each constraint ω = (i, Bi, t) ∈ Ω with Bi ⊆ W

representing a region, indicating that the reference point of
agent rit is not allowed to enter the region Bi at time t. The
four constraints differ in terms of how the forbidden region
Bi is generated.

For ωi
lb = (i, Bi

lb, t), ω
j
lb = (j, Bj

lb, t), the forbidden area
Bi

lb = Bj
lb is a square centered at the middle point of rit and

rjt (i.e., centered at (rit+rjt )/2) with width lw (Fig. 2a). This
pair of constraints are mutually disjunctive [32] in the sense
that pair of paths πi, πj that violate both of ωi

lb, ω
j
lb must

have a conflict between agent i, j at time t. As a result, if GC-
CBS plans by only generating this pair of conflicts, the g cost
of any nodes that are generated during planning must be a

1We are using the standard L2-norm for finding the length of any vector.



(a) Lower bound constraint

(b) Upper bound constraint

Fig. 2: An illustration of conflicts. (a) Lower bound con-
straint ensures that there is always a conflict if both rit
and rjt are inside the constraint region for a given t; thus
applying such a constraint never eliminate any feasible
solution, thereby preserving completeness and optimality. (b)
Upper bound constraint expands the constraint region based
on relative transition vector of conflicting agents i and j;
it eliminates potential solutions where both rit and rjt are
within the constraint region while not colliding.

lower bound of the true optimum [31]. However, in practice,
running CB-GCS with only these two constraints is slow. We
therefore introduce two additional constraints, which allow
CB-GCS to find a feasible solution more quickly.

For ωi
ub = (i, Bi

ub, t), ω
j
ub = (j, Bj

ub, t), the forbidden area
Bi

ub is a rectangle that bounds the relative “transition vector”
of agent i with respect to agent j at time t: Specifically, along
the paths πi, πj of the two agents, their transition vector at
time t can be calculated as pit = rit+1−rit and pjt = rjt+1−rjt
respectively. The relative transition vector of agent j with
respect to agent i is qj,it = pjt − pit. Then, Bi

ub is an axis-
aligned rectangle with lengths along x and y axis equal to
|(qj,it (x))| + ϵ and |qj,it (y)| + ϵ respectively, where ϵ ≥ lw
is a positive number representing the additional collision
avoidance buffer size. The center of Bi

ub is at rjt + qj,it /2
(Fig. 2b). Bj

ub is generated in a similar fashion based on the
relative transition vector of agent j with respect to agent
i. This pair of upper bound constraints is not mutually
disjunctive, i.e., there may exist a conflict-free joint path
that violates both constraints simultaneously. As a result,
{ωi

ub, ω
j
ub} do not guarantee completeness and optimality;

the purpose here is to quickly find a feasible solution.

2) Planning Process: The planning process of CB-GCS is
shown in Alg. 1. Let Pk = (πk, gk,Ωk) denote a high-level
search node, where πk is a joint path (i.e., a set of paths of
all agents) from si to gi for all agents, gk is the sum of costs
of all paths in πk, and Ωk is a set of constraints.

To initialize, the shortest path of each agent is planned
while ignoring any other agents, and the initial joint path π0

with cost g0 is formed. Then, an initial node P0 = (π0, g0, ∅)
is created and added to OPEN, a priority queue that contains
a set of high-level nodes and prioritizes these nodes based on
their g values from the minimum to the maximum. FOCAL
is a subset of OPEN, which will be presented later.

In each planning iteration (Line6-24), a node Pk is popped
from OPEN for expansion. Then Pk is first checked for a
conflict. If no conflict is found, Pk is returned, whose joint
path is a collision-free joint path for all agents. Otherwise,
a conflict C is detected, and the aforementioned set of four
constraints are generated. For each of those four constraints
ωi ∈ Ω, a new corresponding set Ωl of constraints is formed
by adding ωi to the set of constraints inherited from the
current node Pk. Then, low-level planning is invoked for
agent i based on the constraint set Ωl. If no path is found
by the low-level planning, the current branch is discarded.
Otherwise, the found path πi

∗ is used to update agent i’s
path and all other agents’ paths are copied to form a new
joint path πl. A new high-level node Pl = (πl, g(πl),Ωl) is
created and added to OPEN for future search.

CB-GCS also leverages the anytime focal search tech-
nique [28] to speed up the planning while looking for a
bounded sub-optimal solution. Specifically, let gmin denote
the smallest cost of all nodes in OPEN. Let ϵL ∈ [0, 1] denote
a constant real number that indicates the maximum optimal-
ity gap for the low level planner, and let ϵF ≥ 0 denote
a non-negative real number to track the current sub-optimal
bound for the high level planner. FOCAL consists of nodes in
OPEN whose g-costs are within range [gmin, (1+ ϵF )gmin].
Initially, ϵF is set to infinity (Line 4) in order to quickly
find a feasible solution. Afterwards, ϵF is reduced each time
when a better solution is found (Line 12). In FOCAL, nodes
are prioritizes based on the following collision score from the
minimum to the maximum, where a higher score indicates
that there are more collision among the agents. FOCAL pops
nodes with smaller collision scores for expansion at first.

To compute the collision score β(P ) of a node P , for
each pair of agents i, j ∈ I, i ̸= j and for each time step
t ∈ T\{tmax}, divide [t, t+ 1] into TK(t), a set of K time
points that uniformly cover the range [t, t + 1]. For each
of those time points tk ∈ TK(t), interpolate the position
of the agents i, j based on their positions at t and t + 1
along paths πi, πj , and compute the overlapped area Bi,j

tk
.

The collision score β(P ) is the sum of all areas |Bi,j
tk
| over

all time points in TK(t) for all t ∈ T and for all pairs of
agents, i.e., β(P ) =

∑
i,j∈I,i̸=j

∑
t∈T

∑
tk∈TK(t) |B

i,j
tk
|.

Remark 2: Alg 1 preserves all feasible solution in the
search space, even upper bound constraints may eliminate
feasible solutions. We justify this by demonstrating that there
is always a high level search node that preserves potential



feasible solutions in its successors. Since lower bound con-
straints never eliminate feasible solutions, a high-level search
node Pi = (πi, gi,Ωi) preserves feasible solutions if there is
no upper bound constraints in Ωi, referred to as a complete
node. Clearly, as long as a conflict exists, a complete node
always has two successors that are also complete, which
means there will always be complete nodes in the open list.

Remark 3: When there is no feasible solution, CB-GCS
cannot terminate and requires an external method to de-
termine the feasibility, inheriting the behaviour of classic
CBS [31]. When feasible solutions exist, unlike the classic
CBS, which guarantees finding the optimal solution in finite
time, CB-GCS finds the optimal solution asymptotically. This
is because, in continuous space, there are an infinite possible
number of possible constraints per time step, so within finite
number of iterations, we cannot guarantee generating a set
of constraints that defines the optimal solution.

B. Low-Level Planning

1) Time-Augmented Graph of Convex Sets: Let G =
(V,E) denote a GCS, where each vertex v ∈ V is associated
with a convex set A(v) ⊆ W , and each edge (u, v) ∈ E
represents a possible transition of an agent from one convex
set to another (Fig. 3(a)). Here, we abuse the notation A:
unlike the notation Ai

t which indicates the area occupied by
agent i at some t ∈ T , we use the notation A(v) to denote
the convex set associated with vertex v in GCS. The focus
of this work is not on how to generate the convex sets for
a cluttered workspace. Instead, the GCS is given, and the
focus is on path planning.

For a set of constraints Ω, let Ωi denote the subset of
constraints that are defined for agent i, where agent i is

Algorithm 1 Pseudocode for CB-GCS
1: Compute Proot and insert into OPEN and FOCAL
2: C ← ∅
3: P ∗ ← Null ▷ Best result so far
4: ϵF ←∞
5: glb ← g0(1− ϵL)
6: while FOCAL not empty and Not timeout do
7: Pk = (πk, gk,Ωk)← FOCAL.top()
8: Remove Pk from FOCAL and OPEN
9: C ←DetectConflict(πk)

10: if C = ∅ then
11: P ∗ = (π∗, g∗,Ω∗)← Pk ▷ Record current best plan
12: ϵF ← gk

glb
▷ Reduce sub-optimal bound

13: continue
14: Ω← GenConstraints(C)
15: for all ωi ∈ Ω do
16: Ωl = Ωk ∪ {ωi}
17: πi

∗ ← LowLevelPlan(i, Ωl, ϵL)
18: if πi

∗ = ∅ then
19: continue
20: πl ← πk, replace πi

l (in πl) with πi
∗

21: gl ← g(πl))
22: Pl = (πl, gl,Ωl)
23: Add Pl to OPEN
24: Update FOCAL based on ϵF
25: return P ∗ or Failure

Fig. 3: An illustration of GCS and T-GCS, where blue dot
and star represents the starting location and goal location
of an agent respectively, pink polygon represents a dynamic
obstacle and black polygon represents a static obstacle. (a)
shows the GCS ignoring the dynamic obstacle. There are
four convex sets in the workspace, and two optimal paths
from s to g colored in brown and green respectively. The
brown path collide with the dynamic obstacle. (b) shows the
T-GCS. Green arrows indicate the adjacent convex sets at the
next layer, while solid arrows represent the edges used by
the optimal path. The convex sets differs at each time layer,
e.g., the number of convex sets are 5,4 and 4 at t1, t2 and t3
respectively.

to be planned by the low-level planning. Given a GCS G,
a set of time steps T = {0, 1, 2, · · · , tmax} and a set of
constraints Ω, we define a time-augmented GCS (T-GCS),
GT = (VT , ET ), where VT contains the vertices of a
collection of GCSs, organized in tmax + 1 layers where
each layer corresponds to a GCS for time step t ∈ T
(Fig. 3(b)). Let Gt = (Vt, Et) denote the GCS for a layer
t ∈ T . The convex sets in Gt should not intersect with
any forbidden areas Bt that are defined in any constraint
ωi = (i, Bi, t) ∈ Ωi related to agent i. As a result, GCSs
at different layers may not be the same. Additionally, for
t = 0, let Gt=0 be a graph containing a single vertex v
whose corresponding convex set A(v) = {si} contains only
the start location of agent i, and let Gt=tmax be a graph
containing a single vertex u whose corresponding convex
set A(u) = {gi} contains only the goal location of agent i.
ET is a set of directional edges (i.e, arcs) representing

the transition from one convex set at layer t ∈ T\{tmax} to
another convex set at layer t + 1. Given VT , we determine
the edge sets by considering the speed limit of the agents:
an edge from v ∈ Gt to u ∈ Gt+1 exists if there exists
at least one pair of points p ∈ A(v), q ∈ A(u) such that
||q − p||2 ≤ vmaxδt.

2) Bilinear Program: Given a T-GCS GT , a similar
Mixed Integer Conic Program (MICP) as in [26], [27] can
be used to find a path for agent i. We first present a bilinear
formulation of the problem in this subsection, and then



convert it to a MICP formulation in the next subsection.
Let qe ∈ {0, 1} denote the flow variable associated with

an edge e ∈ GT . Let Eout
v,t (and Ein

v,t) denote the set of
out-going (and in-coming) edges in GT from a vertex v in
Gt, the GCS at the t-th layer. To form a path in GT , the
following flow constraints must be enforced.∑
e∈Eout

v,t

qe =
∑

e∈Ein
v,t

qe ≤ 1, ∀v ∈ Gt, t ∈ T \ {0, tmax} (3)

∑
e∈Eout

v,0

qe = 1,
∑

e∈Ein
v,tmax

qe = 1. (4)

Let pv,t ∈ R2 denote the point selected in the convex set
A(v) for some v ∈ Gt, t ∈ T :

pv,t ∈ A(v),∀ v ∈ Gt, t ∈ T. (5)

For an edge e = (u, v) connecting two adjacent nodes in
two adjacent layers of GCS in GT , the Euclidean distance
between the points selected, pu,t, pv,t+1, and the speed
constraints can be formulated as follows:

lx,t = pv,t+1(x)− pu,t(x), (6)
ly,t = pv,t+1(y)− pu,t(y), (7)

l2x,t + l2y,t ≤ l2e , (8)

le ≤ vmaxδt. (9)

The objective function to be minimized is:

min
∑
e∈ET

qele. (10)

The program is bilinear as the objective function involves
non-convexity caused by the product of flow variable qe and
the distance variable le.

3) Mixed Integer Conic Program: For an edge e =
(u, v) ∈ ET and its flow variable qe, let ze = qepu and
z′e = qepv , where ze (and z′e) be the product of the flow
variable of edge e and the position variable pu (and pv) in
the convex set at the source vertex u (and target vertex v)
of edge e (respectively).

The flow constraints in Eq.3 can be reformulated as:∑
e∈Eout

v,t

(qe, ze) =
∑

e∈Ein
v,t

(qe, z
′
e), ∀v ∈ Gt, t ∈ T \ {0, tmax},

(11)∑
e∈Eout

v,t

qe ≤ 1. ∀v ∈ Gt, t ∈ T \ {0, tmax}. (12)

Define l̃e = l̃e(ze, z
′
e, qe) as a perspective function: When

qe ̸= 0, l̃e(ze, z′e, qe) := le(ze/qe, z
′
e/qe)qe = le(xu, xv)qe.

Otherwise, when qe = 0, the perspective function returns 0.
The speed constraint in Eq. 9 can be reformulated as:

l̃e(ze, z
′
e, qe) ≤ vmaxδt. (13)

Let Ã(v) denote the perspective of convex set A(v) (which
is still a convex set). Then, ze, z′e of edge e = (u, v), u ∈
Gt, v ∈ Gt+1 belongs to the following sets:

(ze, qe) ∈ Ã(u), (14)

(z′e, qe) ∈ Ã(v). (15)

(a) CB-GCS (ours) (b) MILP (c) KCBS

Empty

(d) CB-GCS (ours) (e) MILP (f) KCBS

Mid-blocked

Fig. 4: Test environments and sample solution paths returned
by different methods.

The objective function to be minimized is:

min
∑
e∈ET

l̃e. (16)

The validity of this reformulation follows from Theorem 5.7
in [26].

Remark 4: This paper assumes time steps T and the step
size δt are given. In practice, T and δt can impact the low-
level planning and should be chosen properly. Increasing δt
influences high level planning by allowing agents to move
over a longer range per time step, leading to a larger upper
bound constraint regions for the agents, and may reduce the
solution quality. Conversely, decreasing δt slows down the
low level planning, since a smaller δt leads to more layers of
T-GCS, and increases the number of variables and constraints
in the bilinear program.

IV. EXPERIMENTAL RESULTS

A. Test Settings

We consider two environments, Empty and Mid-blocked.
Both environments are 10 by 10 workspace, where agents
locate at the border and need to swap their locations, i.e.,
each agent’s goal is the starting location of another agent.
These environments describe a scenario where all single-
agent shortest paths cross at the same position. We aim to use
Empty to evaluate the high-level planner, and Mid-blocked to
demonstrate the impact of obstacles on the low-level planner.
Fig 4 illustrates the environments.

B. Implementation and Baselines

We implement CB-GCS in Python and use Gurobi 11 [5]
as the solver. In our tests, we let Gurobi terminate if the
optimality gap (i.e., the gap between the lower bound and
the upper bound computed by the solver) is within 5%, i.e.,



n glb
CB-GCS MILP KCBS

D1st (time) D∗ △% D1st (time) D∗ △% D1st (time) D∗ △%

Empty
2 24.2 25.3 (0.25s) 24.8 2% 35.7 (0.0s) 35.7 32% 32.7 (0.1s) 32.7 26%
4 42.2 43.7 (5.9s) 43.3 2% 64.3 (0.0s) 64.3 34% 71.8 (1.0s) 59.4 29%
6 61.8 70.1 (3.9s) 69.9 12% 97.1 (0.0s) 92.9 33% 111.0 (2.8s) 84.3 27%

Mid-blocked
2 23.9 25.4 (1.4s) 25.0 4% 35.4 (0.0s) 35.4 32% 43.9 (0.0s) 43.9 46%
4 41.7 43.8 (38.1s) 43.8 5% 73.0 (0.0s) 73.0 43% 137.1 (0.6s) 65.4 36%
6 61.2 inf inf inf 100.1 (0.0s) 90.4 32% 110.9 (3.4s) 83.9 27%

TABLE I: Experiment results. glb is the lower bound computed by Alg. 1 line 5, D1st is the solution quality of the first
feasible solution, D∗ is the best solution quality after termination, and △ is the optimality gap.

ϵL = 0.05. All experiments2 were run on a desktop with a
16-core i7-13700 CPU and 32GB RAM on Ubuntu 22.04.
Baseline methods are as follows:

a) KCBS [4]: It follows the workflow of Conflict-
Based Search (CBS) [31]. KCBS employs a sampling-based
method (e.g. RRT [33]) at the low-level to find path for each
agent in the continuous space. The original KCBS incor-
porates kinodynamic constraints into the low-level planner,
which is not required in this work. In addition, KCBS does
not consider the time constraint τmax (Sec. II) while our
MICP does. Finally, the original KCBS prioritizes the search
by the number of collisions rather than the traversed distance
and terminates after the first solution is found. We adapted
KCBS to align with our problem setting by allowing it to
keep running CBS-like search for further improvement after
finding the first solution. This will persist until either the
time limit is reached or all CBS search nodes are explored.

b) MILP [3]: MILP uses the sum of L1-norm as the
objective function:

L1 =
∑
t

|rit, rit+1|, (17)

and we approximate the speed limits by

|ri, rit+1| ≤
√
2δtvmax. (18)

Details of this MILP formulation can be found in [3].
We refer to a (problem) instance as a specific number

of agents in a specific environment. We set a 100 seconds
runtime limit (i.e., TLimit=100s) for each instance, and fix
the parameters δt = 0.5, vmax = 2, τmax = 10.3

We vary the number of agent n ∈ {2, 4, 6} for each
environment. For each instance, we examine the following
metrics: the sum of cost of the first feasible solution D1st and
the corresponding time, the best solution after termination,
denoted as D∗, and the optimality gap △. For both metrics,
smaller values are better. We consider glb = g0(1 − ϵL) as
the lower bound of an instance, where g0 is the initial sum
of costs in CB-GCS that ignores all other agents.

C. Numerical Results

Table I shows the results. We can see that CB-GCS takes
more time to find the first solution but consistently provides

2Our implementation is available online https://github.com/
rap-lab-org/public_CB-GCS

3We use “τmax” to denote the time constraint in the TB-MAMP problem
formulation as described in Sec. II, and use “runtime limit TLimit” to
denote the runtime limit for each instance.

better solutions than MILP and KCBS. Ultimately CB-GCS
terminates with a smaller optimality gap. For example, for
n = 4 in Empty, the optimality gap of CB-GCS is 2%,
which is 10 times smaller than others (near 30%). MILP can
instantly find a feasible solution (within 0.1s), but it rarely
improves the solution further in the remaining time. This is
because the L1-norm in the objective function doesn’t align
with our Euclidean distance objective. This misalignment
causes early termination (MILP mostly finish within 10s) as
MILP reaches the optimality gap defined by L1-norm. The
L1-norm objective also causes the MILP to prefer rectilinear-
like paths (i.e., movements are vertical or horizontal as
shown in Fig. 4), which impacts the solution quality. KCBS
can quickly find the first feasible solution and continues to
improve it over time, but it cannot effectively reduce the
optimality gap. For example, in Mid-blocked n = 4, it finds
feasible solution in 0.6s, but ends up with △ = 36% after
100s. This is because the low-level sampling-based planner is
unbounded, preventing it from improving the overall solution
quality by applying high-level constraints.

We can also observe that instances from Empty have higher
glb than those from Mid-blocked. This indicates a drawback
of our low-level planner (T-GCS): it is significantly impacted
by the presence of obstacles. In fact, the static obstacle at the
center of Mid-blocked causes at least 4 convex sets per layer
(depending on the convex generation method). The number
of edges in Mid-blocked is 10x more than in the Empty,
which significantly slows down the program (Eq (3),(4)). As
the result, for the same number of agents, the runtime for
finding the first feasible solution in Mid-blocked is much
higher than in Empty, and it failed to find a solution on Mid-
blocked when n = 6, which is also the reason we test with
up to 6 agents.

V. CONCLUSION AND FUTURE WORK

This paper introduces CB-GCS for MAMP that com-
bines time-augmented Graph of Convex Sets (T-GCS) and
Conflict-Based Search (CBS). CB-GCS can find high quality
solution in continuous space. Numerical results show that it
provides solutions with an optimality gap more than 10x
smaller compared to other competitors (MILP and KCBS).
However, the size of T-GCS can be significantly impacted
by the topology of the environment, which slows down the
low-level planning.

Future work includes improving the convex set generation
to reduce the size of the graph in CB-GCS. Given that

https://github.com/rap-lab-org/public_CB-GCS
https://github.com/rap-lab-org/public_CB-GCS


runtime of T-GCS significantly increases in the presence
of obstacles, one could consider adapting implicit graph
search [34] to T-GCS, to leverage techniques such as par-
allelization and anytime planning.
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