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Abstract— The Moving-Target Traveling Salesman Problem
(MT-TSP) seeks a shortest path for an agent that starts at
a stationary depot, visits a set of moving targets exactly
once, each within one of their respective time windows, and
returns to the depot. In this paper, we introduce a new Mixed-
Integer Conic Program (MICP) formulation for the Multi-
Agent Moving-Target Traveling Salesman Problem (MA-MT-
TSP), a generalization of the MT-TSP involving multiple agents.
Our approach begins by restating the current state-of-the-art
MICP formulation for MA-MT-TSP as a Nonconvex Mixed-
Integer Nonlinear Program (MINLP), followed by a novel re-
formulation into a new MICP. We present computational results
demonstrating that our formulation outperforms the state-of-
the-art, achieving up to two orders of magnitude reduction in
runtime, and over 90% improvement in optimality gap.

I. INTRODUCTION

Given a set of fixed target locations (targets) and the traver-
sal costs between all target pairs, the Traveling Salesman
Problem (TSP) aims to find a tour of minimum cost for an
agent, that visits all the targets exactly once. The TSP is a
classical problem in combinatorial optimization, with several
applications including unmanned vehicle planning [1]-[4],
transportation and delivery [5], monitoring and surveillance
[6], [7], disaster management [8], precision agriculture [9],
and search and rescue [10], [11]. The Moving-Target Trav-
eling Salesman Problem (MT-TSP) is a generalization of the
TSP where the targets traverse some predefined paths. The
targets may also have associated time windows only during
which an agent can visit them. Different variants of the MT-
TSP were introduced in the literature, motivated by practical
applications such as defending an area from oncoming hostile
rockets or Unmanned Aerial Vehicles [12]-[14], monitoring
and surveillance [15]-[18], resupply missions with moving
targets [12], dynamic target tracking [19], and industrial
robot planning [20].

It is generally assumed that the maximum speed of the
agent is greater than the speed of the fastest target [12].
When the speeds of all the targets reduces to 0, the MT-
TSP simplifies to the TSP. Hence, MT-TSP is NP-Hard. In
the literature, we find several heuristic based approaches for
the MT-TSP [15]-[17], [19], [21]-[25] that finds feasible
solutions, but gives no information on how far they are from
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Fig. 1. A feasible solution for an example instance of the MA-MT-TSP.
The solid, colored portions of the target trajectories correspond to their time
windows. The agents begin and end their tour at the depot. Note how one
of the three agents is not assigned any targets in this solution, and simply
waits at the depot.

the optimum. The literature also presents exact and approxi-
mation algorithms for some MT-TSP variants. However, they
only apply to very restricted cases where the targets are
assumed to move in the same direction with the same speed
[20], [26], move along the same line [12], [27], or move
along lines passing through the depot [12]. In a recent paper
[28], we presented an algorithm capable of handling targets
moving along arbitrary curves, offering tight lower bounds
for the MT-TSP. Also, in [29], we introduced a new mixed-
integer conic program (MICP) that finds the optimum for
the MT-TSP, for the case where each target moves along
its own line, and have one associated time window. Finally,
a complete algorithm for MT-TSP with stationary obstacles
was also introduced recently in [30].

The objective of this paper is to find exact solutions for
the Multi-Agent Moving-Target Traveling Salesman Prob-
lem (MA-MT-TSP), a generalization of the MT-TSP with
multiple agents. Currently, the only exact solver for this
problem is the MICP introduced in [14]. Hence, we take
this as our baseline. Here, each target is assumed to move
along its own line, and have one associated time window.
However, in this paper, we consider a less restricted case
where each target traverse a path made of piecewise-linear
segments, and have more than one associated time window
(Fig. [T). Therefore, we first extend the baseline MICP to
accommodate these changes. Then, we pose this extended
formulation as a nonconvex mixed-integer nonlinear program



(nonconvex MINLP), which we then finally reformulate as
a new MICP, similar to the works in [29], and [31].

We prove that our approach finds the optimum for the MA-
MT-TSP, and present computational results to corroborate the
performance of our formulation. We observe that our MICP
formulation significantly outperforms the baseline, and scales
much better with increasing number of targets and agents,
and larger time window durations, achieving up to a two-
order-of-magnitude reduction in runtime, and up to over 90%
tighter optimality gap.

II. PROBLEM DEFINITION

All the targets and agents move on a 2D Euclidean plane
(R?). All the agents share the same maximum speed v, 4,
and the same depot s. Without loss of generality, we define
a copy of the depot, denoted by s’, and require the agents
to return to s’ after completing their respective tours. Let
Viar := {1,2,--- ,n} denote the set of n moving targets,
and Vg := {1,2,--- ,m} denote the set of m agents. For
a target u € Viq,, the portion of u’s trajectory within any of
its time windows consists of linear trajectory segments. The
set of all such segments{]_-] across all of u’s time windows is
denoted by C',. The set V.4 1= Uuevmr ', consists of all
the linear trajectory segments corresponding to all targets.
For a segment i € Vg, 73 € Viq, denotes its associated
target. Also, ¢, and ¢; represent the times, and P and p;
represent the positions of the segment’s start and end points.
Finally, v; denotes the velocity of 7; along the segment. Let
V = Vieq U {s,s'}. For s and s’, we define velocities vy,
vy, and set them to (0,0) since they are stationary. Also,
we define time windows [t,,%s] and [t ,ts] for s and s’
respectively. We set t, = 5 = 0 since the agents depart
from s at time 0. We also set £, = 0 and ty =T where T
is the time horizon over which the trajectories of the targets
are defined. For some i € {s,s'}, p, and p; simply refers to
the fixed depot location. An agent visits a moving target (say
u) if the position of the agent coincides with the position of
w at some time ¢ within time interval [¢,,¢;] corresponding
to some segment ¢ € C,. The objective of the MA-MT-TSP
is to find tours for the agents such that each target is visited
once by one of the agents, and the sum of the distances
traversed by the agents is minimized.

III. BASELINE MICP FOR MA-MT-TSP

This section presents the current state-of-the-art MICP
for the MA-MT-TSP introduced in [14]. We extend this
formulation to accommodate piecewise-linear trajectories,
and more than one time window for each target. Before
proceeding further, we define a directed graph (V, E), with
all the nodes in C,, for each u € V,,, forming a cluster.
The edges in E are added as follows: From s to all nodes in
Vseg» from each node belonging to a cluster to all the other
nodes belonging to different clusters, and finally, from all
the nodes in Vg, to s’. For any node 7 € V, Ef” and Ef“t
denotes the set of all edges entering and exiting .

'We represent a segment using a unique label i € Z7.

We now define the decision variables for the MICP. For
each node ¢ € Vg4, the variable ¢;, € R>o denotes the
time at which an agent k € V4 visits target 7; at node
1. The position of 7; at time ¢; ; is denoted by p; € R2.
Variables t; ;, are also defined for i € {s,s'}, denoting the
time at which agent k& departs or arrives at the depot. Here,
pi,; denotes the fixed depot position. For each edge ¢ =
(i,j) € E, the binary variable y. ) € {0,1} denotes the
choice of whether agent k traverses the edge. The auxiliary
variable /. € R>( denotes the cost incurred by agent £
if it were to traverse the edge, which can be modeled by
Yek |[Pj — Pikllo- To define each [ variable, the MICP
relies on two other auxiliary variables 174 € R?, and I, €
R>o. The variables [7% represent p; — pik» and variables
fe,k relate to [, through a set of big-M constraints in the
MICP. The big-M here is the parameter R, which denotes
the diagonal length of the square area that contains the depot
and all the target trajectories. We now present the baseline
formulation below.

min Z Zle’k (1)

k€Vagr e€EE

subject to constraints

Y Yer <1, VkE Vg, ©))
ecEgut

Z Ye,k S 17 vk € Vagtv (3)
ecE}

Z Z Z ye7k:17 Vu € Viar, 4

keVagt i€Cy eGEZ"

D Ve =D Yo Vi€ Vieg, k€ Vagr, )
ecEim ecEout
t, <tir <ty YieV, ke Vyy, (6)
leo < Vmaz(tjr —tik +T(1 — Ye i), o
Ve=(i,j) € E, k € Vag,
I3y = ((gj + tev; — tiv) — (p, + tikvi — Lvi), ®

Ve= (27]) € E» ke Vagt7

le,k - le,k +R(1 - ye,k)7 Ve= (Zaj) S Ea k € Vagta (9)

i

2 =2 .
e,k QSle,Iw Ve=(i,j) € L, k € Vage-

(10)

The objective is to minimize the sum of tour lengths
of all the agents. The condition that an agent can depart
from and arrive at the depot at most once is described by
(2) and (@) respectively. The constraints (@) ensure that each
target is visited exactly once by one of the agents, at one of
the target’s segments. The flow conservation constraints for
all the segment nodes, for all agents, are described by (3).
Constraints (2) to (3) are flow constraints that ensure that
each agent can have at most one tour, which starts and ends
at the depot, and that each target must be visited once by one
of the agents. Constraints () require that the time at which
an agent visits a depot node ¢ € {s, s} or visits a target 7;



at a segment node 7 € Vg4, corresponds to the time interval
[t;,t;] for that node. Constraints (8) captures the definition
of the auxiliary variables I7%.

Now, consider the big-M constraints (7)) and (9) for each
edge e = (i,j) € E, and each agent k € V4. The big-
M values used here are T', and R, respectively. Constraints
@) along with (8) and (I0) describe the condition that if
Yeo = L, then lo x> ||pjx — pikll, and if ye s = 0, then I,
is free to take any value. Note that to minimize the objective
(1, the condition: l.x = ||pjx — Piklly if Yer = 1, and
le, = 0 if yo 1, = 0, must be satisfied. The time-feasibility
constraints describe the condition that if y. , = 1, then
le.t < Umaa(tjr —tik) and if y. p = 0, then no restrictions
are placed on #; ; and ¢, ;, (since [, = 0 in this case).

Although this MICP describes the MA-MT-TSP well, It
is challenging to solve in practice. This is possibly due
to the big-M constraints and (@), which may lead to
poor convex relaxations, as well as numerical instabilities, as
noted by the authors in [14]. In the next section, we present
an alternative MICP based on the ideas in [29] and [31], that
finds the optimum for the MA-MT-TSP, much faster than the
baseline. Prior to presenting this formulation, we restate the
baseline as a nonconvex MINLP. This will aid us in proving
that an optimal solution for our new MICP indeed provides
an optimal solution for the MA-MT-TSP.

IV. A NEw MICP FOR THE MA-MT-TSP
A. Nonconvex MINLP Formulation for MA-MT-TSP

This section details how the baseline MICP formulation
for the MA-MT-TSP can be restated as a nonconvex MINLP.
We refer to this program as the nonconvex formulation for
simplicity. First, we define the decision variables. For each
node ¢ € V and agent k € V.4, we reuse the variable
t;,, from the baseline. In addition, we also define p;; as
a new auxiliary variable. For each edge e = (i,j) € E,
we reuse the variables ye k, le,k, and [7% from the baseline.
The [ variable is defined with the help of new real
auxiliary variables z. x , and z. y ; representing the products
Ye,kPi,k and Y. xl; 1, respectively, and variables z;’k’p and
zé kot representing Y. rp;, 1 and y. rt; 1 respectively. Observe
how in the baseline, [ j, was defined with the help of ZE, 1 and
big-M constraints instead. We now present the nonconvex
formulation below.

min Z Z lek (11)
k€EVagt e€EE
subject to constraints @), (3), @, @), (@),
Pigk =P, +tikvi — vy, VieV, ke Vog, (12)

le,k < Uma:v(zék,t - ze,k:}t)v Ve= (27]) cF, ke Vagta
(13)

lfi = (Zé,k,p - ZeJﬂ,p)a Ve= (27.7) ekl ke Vagt7 (14)

2

2ol <24, Ye=(i,7) € B, k € Vyg, (15)
|y , ¢

Zek,p = Ye,kDik> Zek,t = Ye,kbi ks Z(;k’p = Ye,kPj k> (16)

Zé,k,t = ye,k,tj,ka Ve= (17]) S Ea ke Vagt~

This formulation shares the flow constraints ) to (3) as
well as the time of visit constraints (6) from the baseline.
Constraints describe the variables p; ;.. Now, we explain
the remaining constraints (I3) to (16). Note how apart
from the binary requirement for the flow variables y. ., the
nonconvexities in this program arise from the product of
flow variables and node variables in (I6). These constraints
help achieve the role satisfied by the big-M constraints in
the baseline. When y. 5 = 1, (16) gives Zek,p = Dik and
Z, 1.p = Pjk- Consequently, constraints and give
lee > |lpj,k — pikll,- However, when y. = 0, (T6) gives
Zekp = z;,w) = (0,0) and consequently, l.; = 0 from
(T4) and (I5). Like the baseline, in order to minimize the
objective, the condition I, 1, = ||pj,x — Pik||y if Yex =1 and
le, = 0if y. = 0, must be satisfied. Now, consider the
time-feasibility constraints @]} When ye . = 1, 2ze it = tik
and z, , , =t; from (I6). Consequently, (T3) gives I, <
Umaz (tj,k — ti,k). However, when y. , = 0, t; 5, and ¢; , are
free to take any values since lex = ze .kt = 2,5, = 0 in
this case. Hence, the nonconvex formulation and the baseline
MICP have the same optimal objective value. Moreover,
an optimal solution for the MA-MT-TSP can be obtained
from an optimal solution for the nonconvex formulation by
retrieving the values taken by e 1, t; %, and p; ; variables.

B. A New MICP Formulation for MA-MT-TSP

In this section, we reformulate the nonconvex formulation,
as a new MICP for the MA-MT-TSP. First, we define the
decision variables. We discard the node variables ?;; and
pi,k, used in the nonconvex formulation. Additionally, we do
not define a separate set of edge variables for each agent
k € Vgt We then end up with a single set of decision
variables ye, le, IZY, Ze ps Zeyts 2 zéyt for each edge e € E.
Now we present the MICP.

/
e,p’

min Yl (17)
ecll
subject to constraints
> ve=a (18)
eeEgut
> ve=a, (19)
ecE}
1< a<m, (20)
DY pe=1, Vu€e Vi, 1)
1€Cy ecEI"
STy = D (Zewte), Vi€ Vg, (22)

eeE;in ee Efut



yeéi < Ze,t < yegh Ve= (27]) S Ea (23)
yet; < 20y < yelj, Ve=(i,j) € E, (24)
Ze,p = UiZe,t =+ yc(ﬂl - Ei”’i)? Ve= (17.7) € Ea (25)
Z;,p :vjzé,t+ye(ﬂj 713‘”]’)7 ve: (Za]) GEa (26)
le < Umaw(Z;t —Zet), Ve=(i,j) €E, (27)
lgy = (Z(/z’p - Ze,p)7 Ve= (7’73) € E7 (28)
lizll; <12, Ve=(i,j) € B. (29)

This formulation defines multiple agent tours without
defining a separate set of edge variables for each agent. This
is done by allowing an integer flow o where 1 < a < m,
in and out of the depot, and restricting the flow in and out
of the other nodes to be equal, and be at most 1. Recall that
m denotes the total number of agents. These conditions are
described by the new flow constraints (I8) to (22), which
effectively replaces to (3) in the nonconvex formulation.
Note that in (22), an additional condition, »_ cpin 2, ; =
ZeeE;m Ze,t 1s added for each node ¢ € Vi,g. This is to en-
sure that the incoming and outgoing edge for some segment
node ¢ in a tour, coincide at the same time corresponding
to that node. This additional condition is used since node
variables for time are not introduced in this formulation.

Now, consider the remaining constraints @3) to (29).
Constraints (27) to 29) are similar to constraints (I3) to
(T3) in the nonconvex formulation, with the only changes
coming from not having a separate set of edge variables and
corresponding constraints for each agent. Finally, constraints
(23) to (26) in the MICP replaces constraints (6)), (I2), and
(T6) in the nonconvex formulation. The key idea here is as
follows: For each e = (i,j) € E, we define (z¢p,zet) €
yeX; and (2,2, ,) € yeX;, where (p;,t;) € X; represent
the below two inequalities, similar to constraints (6)) and (12)),
for some node i € V.

pi = p, +tivi — L;v;.

(30)
€1y

Consequently, we let (z¢p, %) € X; and (2,2, ,) €
X; when y. = 1, and become (0, 0,0) when y. = 0, without
explicitly defining node variables ¢; and p;, or multiplying

them with the flow variables like in (I6).

From an optimal solution to the MICP, optimal agent
tours for the nonconvex formulation can be obtained by
considering the subset of edges Fipyr := {e € E : y. = 1}
and finding all the 1 < o < m vertex-disjoint paths starting
at s and ending at s’ within Fy,,,.. This can be done
using a graph search algorithm such as Depth-First Search
(DFS). Since all the agents are homogeneous and share the
same depot, any of the paths can be assigned to any agent.
Let EF . C FEipy denote the path assigned to an agent
k € Vage. Note that Erour = Upev,, EF ... Also note that
it is possible EF . = () for some k in the case where some of
the agents are not assigned tours. Finally, note that for some
k € Vagi, EE . ={e € E: y.r = 1} for the nonconvex

formulation. Hence, for each e = (i,j) € EF ., we set

Ye k = 1, and set (ze,k,paze,k,t) = (pi,katiJc) = (Zeq,p7ze,t)
and (z; . » Ze o) = Piktik) = (200 Ze0)-

C. Proof of Validity

In this section, we will show the correctness of the MICP
formulation by proving the following theorem.

Theorem 1 The optimal value of the MICP formulation is
equal to that of the nonconvex formulation for the MA-MT-
TSP. Additionally, optimal agent tours for the nonconvex
formulation can be recovered from an optimal solution to
the MICP by following the procedure explained previously.

Proof: Let Ei,,, be the set of all edges selected
at optimality by either of the two formulations. For the
nonconvex formulation, Eiu, = {e € FE 1 k €
Vagt such that y.; = 1}, and for the MICP formulation,
Eiour := {€ € E : y. = 1}. The flow constraints in
both formulations require that the edges in Fiyy, form
1 < a < m vertex-disjoint paths, that starts at s and
ends at s’, such that for each target u € Vi, exactly one
node in C,, is visited by one of the « paths. First, consider
an edge ¢ ¢ Fioyr In the nonconvex formulation, for all
k € Vagts Ye,r = 0. Consequently, constraints (T6) require
(Zekps Zeet) = (2o g pr Ze ) = (0,0,0) for all k € Vgt
Similarly, in the MICP formulation, y. = 0 leading to
constraints (23) to (26) requiring (2c p, ze.t) = (20 204) =
(0,0,0). Hence, the cost addend is > ¢y, lex =lc =0
for either formulation. Now, consider an edge e = (4,j) €
FEiour. In the nonconvex formulation, since edge e is as-
signed to some unique agent k* € Vg, Yo = 1 when
k = k* and yor = O for all other k € V4 \ {k*}.
Consequently, (I6) requires (ze i+ p, Ze,k*t) = (Dijk*sti k=)
and (2« 20 k= 1) = (Pjk~, tjk+). Additionally, (€) and
(12) require (p;p+,tik+) € X; and (pjp+,tjn-) € Xj.
These two requirements, with the help of flow conservation,
(@) reads (ze i p, 2ze kv t) € Xi, (26 pr %o k=) € X, and
for adjacent edges e = (i,7) and f = (4, k) in Eiours
(20 = pr 2ot #) = (24,65 ps 21,k 1) Similarly, in the MICP
formulation, y. = 1 and therefore, constraints (23) to (26)
require (ze,p, ze,t) € Xy, (20, 20 ¢) € X;j. Additionally, the
new requirement in ensures that for adjacent edges e =
(i,7) and f = (4, k) in Etour, (2 s 204) = (2£.p, 21,t)- Fi-
nally, the time-feasibility constraints in both the formulations
(13) and have the same form. Therefore, corresponding
to an edge e € E,,y,, the cost addend in the nonconvex
formulation is Zkevagt lep = leg = Hzé’k*’p - Ze’k*’pHQ
which is the same as the cost addend [, = Hz;’p - ze,pHQ by
the MICP formulation. Since the FE},,, corresponding to an
optimal solution for one formulation, when used in the other
formulation, results in a feasible solution with the same cost,
both formulations share the same optimal value. Moreover,
from an optimal solution to the MICP, optimal agent tours
for the nonconvex formulation can be obtained by following
the previously described procedure. [ ]



V. NUMERICAL RESULTS

A. Test Settings and Instance Generation

All the tests were run on a laptop with an Intel Core 17-
7700HQ 2.80GHz CPU, and 16GB RAM. The implemen-
tation was in Python 3.11.6, and both the baseline MICP
formulation (MICP-Baseline) and the new MICP formulation
(MICP) were solved using Gurobi 10.0.3 optimizer [32]. All
the Gurobi parameters were set to their default values, except
for TimeLimit EI, which was set to 1800.

A total of 80 instances were generated, with 20 instances
each for 5, 10, 15, and 20 targets. Each instance was defined
by the number of targets n, a square area of fixed size
S = 100 units (with diagonal length R = \/55), a fixed
time horizon T = 150 secs, the depot location fixed at
the center (0,0) of the square, the maximum speed of the
agents U = 4 units/sec, and finally, a set of randomly
generated piecewise-linear trajectories corresponding to the
n targets such that each target has a constant speed within
[0.5,1] unit/sec, and is confined within the square area.

For each instance, we conducted experiments where we
varied two test parameters: (a) the total time window duration
for each target, which is the sum of durations of all the
time windows associated with the target, and (b) the number
of agents m. The total time window duration was varied
to be 20, 40, and 60 secs, and the number of agents were
varied to be from 1 to 5. Each target was assigned two time
windows of equal duration in all the experiments. The time
windows were selected such that for all generated instances,
a feasible solution exists even when restricting the number of
agents to 1. This was done by randomly choosing a sequence
in which all the targets are visited by a single agent, and
then finding the quickest tour for that sequence by fixing
the speed of the agent to be v,,4,. If the time to complete
the tour exceeded 7', the process was repeated with another
sequence. Otherwise, for all choices of total time window
durations, two non-intersecting time windows of half the
total duration were defined for each target such that one of
the time windows contains the time at which the target was
visited in the tour.

To evaluate the MICP-Baseline and MICP formulations,
we use % Gap, and runtime, which we will now explain.
For a given total time window duration, number of agents,
and formulation of choice, the solver is first run on all the
20 instances corresponding to a given number of targets.
The optimality gap value from the solver for an instance is
defined as Ic'fgjccllb x 100, where c; is the feasible (primal)
objective, and cj;, is the lower bound (dual) objective. %
Gap denotes the average of the smallest gap values output
by the solver within the time limit for all these instances,
and runtime denotes the average of the run-times output by
the solver for all these instances.

2Limits the total time expended (in seconds).
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Fig. 2. Numerical results comparing the % Gap and runtime for MICP-
Baseline and MICP, when the number of agents is fixed at 1, and the total
time window duration is varied to be 20 (a), 40 (b), and 60 (c) secs.
The MICP scales significantly better than MICP-Baseline with larger time
window durations and more targets. For 10 targets in (c) and 15 targets in
(b), the MICP shows a runtime improvement of two orders of magnitude.
It also shows a % Gap improvement of more than 15 for 15 targets in
(b). Similarly, for 15 targets in (c) and 20 targets in (b) and (c), the MICP
runs up to 1000 seconds faster, while also providing a % Gap improvement
within a 35-40 range.

B. Varying the Total Time Window Duration

In this section, we present the results of experiments where
the total time window duration was varied. The number of
agents were fixed at 1, and all the instances were solved
using both formulations for the varying durations (20, 40,
and 60 secs). The results of this experiment are illustrated in
Fig. |Z|, with panels (a), (b), and (c) corresponding to durations
20, 40, and 60, respectively. We observe that for both the
formulations, the problem becomes more challenging to
solve as the number of targets increases. Moreover, this
difficulty becomes more prominent as the total time window
duration increases. However, we observe that the MICP



scales significantly better than MICP-Baseline against larger
number of targets and bigger time windows. This can be
seen especially in the case of 15 targets where the % Gap
always converge to 0 for the MICP, and its runtime increases
noticeably only with the largest time window duration of 60,
as opposed to the MICP-Baseline whose % Gap and runtime
grows dramatically with increasing time window durations.
Note how at 20 targets, the problem is challenging for both
formulations. However, MICP still significantly outperforms
MICP-Baseline in terms of runtime or % Gap for all the time
window durations considered.

C. Varying the Number of Agents

In this section, we present the results of experiments where
the number of agents was varied. The total time window
duration was fixed at 40 secs, and all the instances were
solved using both formulations for 2, 3, 4, and 5 agents.
The results of this experiment are illustrated in Fig. 3] with
panels (a), (b), (c), and (d) corresponding to 2, 3, 4, and
5 agents, respectively. Recall that the 1 agent case was
already presented in Fig. [2] (b). Hence, it is not repeated
in Fig. 3] Like before, the % Gap and runtime worsen with
more targets for both formulations. With additional agents,
this effect is further pronounced for the MICP-Baseline.
However, for the MICP, we observe an improvement in
results in this case. From Fig. [3] we observe that the MICP-
Baseline struggles significantly with 2 or more agents for
15-target instances, and with 4 or more agents for 10-target
instances. On average, we find the solver reaches the time
limit in these cases, with a remaining % Gap of more than 60.
However, for the MICP, the % Gap always converges to 0.
Moreover, we observe a significant improvement in runtime,
with up to two orders of magnitude for 10 and 15 targets, and
one order of magnitude for 20 targets. This can be attributed
to the MICP not using a separate set of decision variables
for each agent and to the improved convexification process
it uses, which does not rely on big-M constraints.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new Mixed-Integer Conic
Programming formulation that finds optimal solutions to
the Multi-Agent Moving-Target Traveling Salesman Prob-
lem. We considered scenarios where targets move along
piecewise-linear segments and may have multiple associated
time windows. We proved the validity of our formulation,
and provided numerical results to corroborate its perfor-
mance. Our experiments show that the proposed MICP
outperforms the state-of-the-art MICP, both in terms of
runtime and optimality gap across various experiments. The
formulation is currently limited to cases where agents are
homogeneous and share a common depot. As future work, we
plan to extend our approach to accommodate heterogeneous
agents and multiple depots.
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