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Abstract— This paper focuses on the motion planning prob-
lem for serial articulated robots with revolute joints under
kinematic constraints. Many motion planners leverage iterative
local optimization methods but are often trapped in local
minima due to non-convexity of the problem. A key reason
for the non-convexity is the trigonometric term when param-
eterizing the kinematics using joint angles. Recent distance-
based formulations can eliminate these trigonometric terms
by formulating the kinematics based on distances, and has
shown superior performance against classic joint angle based
formulations in domains like inverse kinematics (IK). How-
ever, distance-based kinematics formulations have not yet been
studied for motion planning, and naively applying them for
motion planning may lead to poor computational efficiency. In
particular, IK seeks one configuration while motion planning
seeks a sequence of configurations, which greatly increases the
scale of the underlying optimization problem. This paper pro-
poses Propagative Distance Optimization for Motion Planning
(PDOMP), which addresses the challenge by (i) introducing
a new compact representation that reduces the number of
variables in the distance-based formulation, and (ii) leveraging
the chain structure to efficiently compute forward kinematics
and Jacobians of the robot among waypoints along a path. Test
results show that PDOMP runs up to 10 times faster than the
sampling-based and angle-based-optimization baseline methods.

I. INTRODUCTION

Motion planning is a fundamental problem in robotics that
seeks paths from a starting configuration to a goal configura-
tion under various constraints, including collision avoidance,
stability, and kinematic and dynamic feasibility. This paper
focuses on the motion planning problem for serial articulated
robots with revolute joints, which has been addressed by
optimization [1], [2], search [3], [4], sampling [5], [6], [7],
[8], [9] and learning-based approaches [10]. For the purpose
of obtaining high-quality paths subject to various constraints
in a high-dimensional configuration space, motion planning
is often achieved by iterative local optimization, which can
either generate a path from scratch or refine initial solutions
provided by other planners. However, these methods can get
slowed down or even trapped into local minima, resulting in
infeasible or suboptimal solutions.

One way to handle the trigonometric constraint is to elim-
inate them by using distance-based kinematic formulations
of the serial articulated robots [11], [12], [13], [14], [15],
[16], [17]. The main idea is to attach spatial points to the
robot and the obstacles, and formulate the kinematic model
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Fig. 1: PDOMP solves a motion planning problem using
distance-based formulations which represent the robot and
obstacles through attached points, and optimizes the dis-
tances between them to find a collision-free start-goal path.

based on the distances among these points instead of joint
angles. Distance-based kinematic formulations were mainly
used to solve inverse kinematic (IK) problems [11], [18],
[19], and have demonstrated superior performance compared
to joint-angle-based approaches [16], [14]. However, they
have not yet been studied for motion planning problems,
and naively applying them for motion planning may lead
to poor computational efficiency. Specifically, IK seeks one
configuration while motion planning seeks a path, i.e., a se-
quence of configurations, which greatly increases the scale of
the underlying optimization problem. Most existing distance-
based formulations exhibit quadratic or cubic complexity
with respect to the scale of problem, and are thus prevented
from being used in motion planning.

This paper addresses this challenge and proposes a new
approach called PDOMP (Propagative Distance Optimization
for Motion Planning) that extends distance-based formula-
tions to motion planning in a computationally efficient way.
PDOMP gains computational efficiency for the following two
reasons. First, this paper introduces a new angle representa-
tion for distance-based methods, which reduces the number
of distances (in other words variables) required to repre-
sent a joint angle, and expedites the optimization. Second,
while our prior work on IK [20] introduced a propagation
method to leverage the chain structure of serial robots to
efficiently compute forward kinematics and Jacobians for a
single configuration, PDOMP further extends this idea to



achieve propagation between waypoints (i.e., configurations)
along the entire path during motion planning, which further
expedites the computation.

We compare PDOMP with both optimization- and
sampling-based methods as baselines on various robots in
simulation. The results show that our method runs up to 10
times faster than the baselines. We then conduct an ablation
study, which shows that, the new representation of joint
angles speeds up the distance-based optimization by a factor
ranging from 3.1 to 3.8, while the propagation technique
boosts speed by 100 to 400 times.

II. RELATED WORKS

A. Distance-Based Kinematic Formulations

Distance-based formulations assign spatial points to the
robot links and obstacles, represeting the joint angles using
the distances between these points. The effectiveness of
distance-based formulations was verified in inverse kinemat-
ics (IK). Josep et al. [11] used a distance matrix to formulate
the kinematic model of serial robots [18] and solved the IK
problem using matrix completion approach. Han et al. [12]
parameterized the robot kinematic model with a combination
of anchored diagonal lengths and triangle orientations. Marić,
Giamou, et al. [16] used sparse bounded-degree sum of
squares relaxations [21] to solve IK problems for spherical
joint robots. Marić et al. later proposed a distance-geometric
framework called Riemannian Trust Region (R-TR) [14] to
address the constrained IK using Riemannian optimization.

B. Motion Planning for Serial Articulated Robots

Search-based methods [3], [4] runs systematic graph
search in a discretized representation of the robot’s con-
figuration space (i.e., C-space), which enjoys completeness
and solution quality guarantees but suffers from the high-
dimensionality of the C-space. Sampling-based motion plan-
ners, such as Rapidly-exploring Random Tree (RRT) [5],
Probabilistic Roadmap Method (PRM) [6], and their variants
[7], [8], [9], construct a graph in the configuration space by
randomly sampling points from the C-space, and connecting
the sampled points with feasible paths. These methods are ef-
ficient in high-dimensional spaces but often produce paths of
poor quality without fine tuning, resulting in jagged or non-
smooth trajectories. Local optimization methods iteratively
refine a given initial trajectory based on gradient information,
which can overcome high-dimensionality of the C-space
but may get trapped into local minima. To name a few,
Covariant Hamiltonian Optimization for Motion Planning
(CHOMP) [1] is a first-order optimization-based method that
uses functional gradient techniques to iteratively improve the
quality of the initial path. CHOMP often finds high-quality
paths but suffers from slow computational speed due to the
slow convergence of the first-order optimization. Trajectory
Optimization for Motion Planning (TrajOpt) [2] is a second-
order optimization method that uses sequential quadratic
programming (SQP) to solve the trajectory optimization
problem, which speeds up the computation.

III. FORMULATIONS

This section first introduces basic concepts and notations
in Sec. III-A and reviews the kinematic formulation and
distance graph construction using the spatial points attached
to the robot in Sec. III-B, then formulates the constraints
at each waypoint in Sec. III-C. After presenting the single-
waypoint formulation, we proceed to model the decision
sequence in Sec. III-E. For further details on Sections III-B
and III-C, please refer to our previous work on IK [20].

A. Basic Concepts and Notations

Our method aims to find a discrete path with N waypoints
for a serial articulated robot with M degrees of freedom
(DoF)s that connects the starting configuration to the goal
configuration. Each waypoint in the path is represented
by variables ωk ∈ RM (k = 1, . . . , N), defined in the
configuration space C (which is also referred to as joint
space hereafter), where k is the index of the waypoint.
We consider a linear system ωk+1 = ωk + sk, where sk
is the control input, i.e., the change of variables ωk, at
each waypoint. We consider kinematic constraints, collision
avoidance constraints, terminal state constraints, and the
objectives of minimizing the path length in joint space and
ensuring similarity to the initial path. Notably, our method
has the potential to include additional constraints, such as
robot dynamics.

The spatial Cartesian frame of the robot link is denoted
by Fi, with the frame axes represented as xi, yi, and zi,
where i is the index of robot link. The frames are attached
to the robot links in the same way as the Denavit–Hartenberg
(DH) parameter. Specifically, the origin of Fi is located at
the corresponding robot joint of the ith link. The relative
transformation between Fi2 and Fi1 is denoted by i2Ti1 ∈
SE(3). The transformation of Fi with respect to the world
frame is Ti ∈ SE(3). We use ai−1 to denote the revolute
radius of Fi with respect to the axis zi−1, and αi−1 to denote
the angle between zi−1 and zi about the common normal. We
use di to represent the offset of Fi relative to Fi−1 along zi.
We use s(·) and c(·) to denote the sine and cosine functions
of (·), respectively.

B. Graph of Distance

An example of a serial robot and an obstacle is shown in
Fig. 2a. Instead of using joint angles as decision variables, we
attach spatial points to the robot and obstacles and use the
distances between spatial points to parameterize the robot
kinematics. We attach points to the robot’s base and joint
frames to fully capture the spatial transformations of all the
rigid bodies. Obstacles are represented as clusters of points,
inspired by the common use of LiDAR or depth cameras that
detect and represent environmental obstacles as point clouds.

These spatial points are encoded into a distance graph
G = (V,E). The vertices V in the distance graph represent
the positions of the attached spatial points, while the edges
E represent constraints related to robot kinematics and
collision avoidance. For computational efficiency, edges are
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Fig. 2: Overview of the (a) constraints formulation based on spatial points attached on the robot link frames and obstacles, (b)
propagative computation process along kinematic chain and decision sequence, and (c) the compact representation approach.

only connected between two vertices if they satisfy one of
the following conditions:

• Both vertices are attached to neighboring robot links.
These edges represent the kinematics constraints.

• One vertex is attached to the robot and the other
is attached to an obstacle. These edges represent the
collision avoidance constraint.

C. Constraints at One Waypoint

1) Robot kinematics constraints: The constraints of robot
kinematics formulate the relative transformation between
robot joints that are connected to each other. We formulate
the kinematic constraints by modifying the proximal DH
convention [22] with Euclidean distances between points. We
attach three points to the frame of the ith joint Fi. The first
point ui is attached to the origin to represent the spatial
position of joint i. The second point vi is of distance luvi
away from ui in the direction of xi−1. The third point wi

is of distance luwi away from ui in the direction of xi. We
define Li as the squared distance between vi and wi. By
defining luvi = luwi = 1/

√
2, the relationship between the

joint angle θi and the squared distance Li is

cos θi = 1− Li (1)

The relative transformation i−1Ti is:

i−1Ti =

 1− Li −(2Li−L2
i )

1
2 0 a

cα(2Li−L2
i )

1
2 cα(1− Li) −sα disα

sα(2Li−L2
i )

1
2 sα(1− Li) cα dicα

0 0 0 1

 (2)

Ti is computed by recursively multiplying from the base
frame to i−1Ti. :

Ti = T0

i∏
p=1

p−1Tp (3)

The position of the point attached on the ith joint frame
origin ui can be extracted from Ti.

We also consider the joint limits as box constraints of
the squared distance Li ∈ [Lmin

i , Lmax
i ]. We convert the

box constraint to equality constraints leveraging the Sigmoid
function intorduced in [23] and the slack variable ωi to bound

the squared distance Li within (Lmin
i , Lmax

i ), which is a
close approximation to [Lmin

i , Lmax
i ]:

Li = s(ωi) =
(
Lmax
i − Lmin

i

)
σ(ωi) + Lmin

i (4)

where σ(ωi) = 1/ (1 + e−ωi) : R→ (0, 1).
2) Collision avoidance constraints: Collision avoidance

constraints ensure that the robot does not overlap with
obstacles. These constraints are formulated as inequality
constraints on the distances between points attached to the
obstacles and the robot. For any spatial points attached on
the obstacle, denoted as oj :

djointij = ri − ||ui − oj || ≤ 0 (5a)
dlinkij = 2ai − (||ui − oj ||+ ||ui−1 − oj ||) ≤ 0 (5b)

where j indicates the index of obstacle points. Eq. 5a and
Eq. 5b represent collision avoidance constraints between
points attached to the obstacle and joint i and link i,
respectively. We summarize Eq. 5a and Eq. 5b among all
waypoints as d(ωk) ≤ 0.

D. Compact Representation of Joint Angles

We now introduce a new angle representation that reduces
redundant variables in the distance-based method, reducing
the scale of the optimization problem.

1) Redundancy in the formulation: The Li in Eq. 2 is
a bijection of the classical joint-angle-based DH convention
with the precondition that the joint angle lies within [0, π].
However, this precondition is usually too strong, as the joint
angle limits in many robotic arms exceed this range. As a
result, Eq. 1 no longer holds. In [20], this issue is addressed
by angle decomposition. As shown in Fig. 2c, the angle
decomposition technique divides a joint angle, which may
exceed the range of [0, π], into multiple sub-angles that can
be translated into distance representations. For a joint angle
θi, let θmin

i = 0 and k = θmax
i /π > 0, such that θi ∈ [0, kπ].

The angle θ is then divided into ⌈k⌉ sub-angles θim, each of
which lies within the range [0, π]: θi =

∑⌈k⌉
m=1 θim (θim ∈[

θmin
i /⌈k⌉, kπ/⌈k⌉

]
⊆ [0, π]), where m = 1, . . . , ⌈k⌉ is the

index of sub-angles divided by the angle θi.
For a sub-angle θim, the corresponding squared distance

Lim and slack variable ωim can then be applied by inserting



θim into Eq. 1. Decomposing a single joint angle into multi-
ple sub-angles increases the dimensionality of the kinematic
model, which can slow down computation.

2) Compact Representation: For all sub-angles θim, we
assume they are equal and use only one variable, θ̂, to
represent them. This assumption holds during the iterative
optimization process under the following conditions:

• The optimizer is a general first- or second-order itera-
tive local optimizer, which determines its optimization
direction and step size using the Jacobian, Hessian, or
hyper-parameters that are independent to variables.

• The initial values of the sub-angles, divided by the same
joint angle, are the same.

Now we show that this assumption always holds during the
optimization. For a sub-angle θim and its next neighbouring
sub-angle θi,m+1, the derivative of a cost function g with
respect to them can be written as:

∂g

∂θi,m+1
=

∑(
∂g

∂mTm+1
⊙ ∂mTm+1

∂θi,m+1

)
(6)

∂g

∂θim
=

∑(
∂g

∂m−1Tm
⊙ ∂m−1Tm

∂θim

)
(7)

where g can be a cost function such as the one stated in
Eq. 5a, Eq. 5b, or other types of cost functions, including
end-effector pose cost and center-of-mass cost in [20]. Here∑

(·) indicates summing the elements in the matrix (·).
Utilizing the spatial transformation stated in Eq. 3, we

rewrite ∂g/∂mTm+1 and ∂g/∂m−1Tm as:
∂g

∂mTm+1
= m−1Tm

⊤ ·
(
T⊤

m−1 ·
∂g

∂Tm+1

)
(8)

∂g

∂m−1Tm
=

(
T⊤

m−1 ·
∂g

∂Tm+1

)
· mTm+1

⊤ (9)

For simplicity, let Kn = n−1Tn
⊤ and Pn =

∂n−1Tn/∂θin. We then use Q ∈ R4×4 to denote T⊤
m−1 ·

(∂g/∂Tm+1). We use qxy to denote the element in Q, where
x and y are row and column index. As a result, we have
∂g/∂θi,m+1 =

∑
((Km · Q) ⊙ Pm+1) and ∂g/∂θim =∑

((Q ·Km+1)⊙ Pm). Note that θi,m+1 and θim share the
same revolute axis, and that Tm+1 shares the same origin
with Tm, we have αm = 0, am = 0, and dm+1 = 0.
If θm+1 = θm = θ̂, we get the equivalence relationship
between

∑
((Km ·Q)⊙Pm+1) and

∑
((Q ·Km+1)⊙Pm):∑

((Km ·Q)⊙ Pm+1) =
∑

((Q ·Km+1)⊙ Pm)

=− q11 · s(2θ̂)− q12 · c(2θ̂)− q21 · cαm−1 · c(2θ̂)
− q22 · cαm−1 · s(2θ̂)− q31 · sαm−1 · c(2θ̂)
− q32 · sαm−1 · s(2θ̂)

(10)
which indicates ∂g/∂θi,m+1 and ∂g/∂θim are equal if the
value of the corresponding sub-angles are the same:

(∂g/∂θi,m+1)|θi,m+1=θ̂ = (∂g/∂θim)|θim=θ̂ (11)

The second order derivative of g with respect to θ̂ can be
computed by Eq. 10. The second order derivative remains
the same if θi,m+1 = θim = θ̂. Given that all sub-angles are
bijections to squared distance Lim and slack variable ωim,
same conclusion can be drawn for distance representations.

In an iterative local optimization algorithm, by setting the
initial value of all sub-angles divided from the same joint
angle to be equal to θ̂iter=0, we obtain the same first and
second derivatives for these sub-angles. Since the update rule
depends solely on the Jacobian, Hessian, or hyper-parameters
that are independent of the variables, the values of the sub-
angles will remain identical in subsequent iterations.

This compact representation of variables eliminates the
redundant variables introduced by the angle decomposition
technique. It reduces the size of the Jacobian and Hessian
matrices, thereby improving computational efficiency, espe-
cially when the range of joint angles is large and requires
division into many sub-angles.

E. Constraints of the Path

We focus on three kinds of constraints for the path.
The path length objective is defined as the squared sum of
decision variables along the path, instead of joint angles:

Jlength =
∑

1:N−1

s⊤k sk (12)

The similarity between the optimized path and the initial
solution is defined as:

Jinitial =
∑

1:N−1

(
sk − sinitialk

)⊤ (
sk − sinitialk

)
(13)

which is often used when an initial solution from global
planners is provided. To ensure the last waypoint reaches
the goal, we have a terminal waypoint constraint:

c(ωN ) = (ωN − ω∗
N )⊤(ωN − ω∗

N ) = 0 (14)

F. Propagation Computation Along the Path

As shown in Fig. 2b, we compute the robot configuration
in each waypoint propagatively along both the decision
sequence and the kinematic chain. This propagation occurs
hierarchically. First, we propagate through the decision se-
quence to compute the joint space variables, ω1. Then, for
each waypoint, we compute task-space constraints, such as
collision avoidance, based on the joint space values.

The forward rollout of the decision sequence starts from
the initial waypoint, ω1, and iteratively computes ωk as
ωk−1+sk−1. Within each waypoint, propagation begins from
three spatial points, u0, w0, and v0, which are attached to
the base frame. Since these points are typically stationary
relative to the world frame, their positions are assumed to
be known. In our approach, we group ui, wi, and vi into
a "unit", solving for the variables in the ith unit before
moving to the (i + 1)th unit. Furthermore, the variables
computed in the ith unit reuse pre-computed results from the
(i− 1)th unit. The propagation technique is also applied to
Jacobian computation, where we propagate backward along
the decision sequence and kinematic chain using reverse
accumulation. Importantly, this Jacobian computation occurs
after the forward rollout, enabling the reuse of intermediate
results from the forward pass, which enhances computational
efficiency.

The propagation process within a waypoint maps between
the joint and task space of the kinematic model, which is
in fact the forward kinematics and Jacobian computation



process that has already been stated in [20]. Here we denote
them as hFK and hJacob:

d(ωk) = hFK(ωk) (15a) ∇ωk
d(ωk) = hJacob(ωk)

(15b)

IV. ALGORITHM

The motion planning problem is formulated as a local
optimization problem over s1:N−1:

min
s1:N−1

J = β1Jinitial + β2Jlength

s.t. ωk+1 = ωk + sk, c(ωN ) = 0, d(ω1:N ) ≤ 0
(16)

where β1 and β2 are the weight parameters.
The equality constraint ωk+1 = ωk+sk is inherently han-

dled in the forward rollout. Let d′(ω) = max(0, d(ω1:N )),
we use the augmented Lagrangian method to offload the
constraints into the objective function:
Lρ =J + λ⊤c(ωN ) + µ⊤d′(ω1:N ) +

ρ

2
c(ωN ))⊤c(ωN ))

+
ρ

2
d′(ω1:N ))⊤d′(ω1:N ))

(17)
where λ and µ are the Lagrangian multipliers and ρ is
the adjust penalty parameter. The constrained IK problem
is formulated as finding s∗1:N−1 = argmin Lρ.

The Jacobian of Lρ with respect to the variable ωk is
∇ωk

Lρ =(µ⊤ + ρd′(ωk))∇ωk
d(ωk)

+ 1(k = N) · (λ⊤ + ρc(ωk))∇ωk
c(ωk)

(18)

and the Jacobian of Lρ with respect to the variable sk is
∇skLρ = ∇ωk+1

Lρ + 2β1(sk − sinitialk ) + 2β2sk (19)
As shown in Algorithm 1, we iteratively minimize Lρ and

update the Lagrangian multiplier λ, µ and ρ. The Hessian
matrix computation and solution update rule are generated by
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-
BFGS) solver [24]. After solving for ω∗

k = argminLρ,
we update Lagrangian multipliers λ, µ and ρ. Our method
checks the L1 normalization terminal state constraint c(ω)
and collision avoidance constraints d′(ω) and terminate when
both of them are below a certain threshold ctol and d′tol.

V. EXPERIMENTAL RESULTS

A. Experimental Settings and Baselines

We test all the methods on 3 popular robots in simulation:
Franka, UR10, and KUKA. We set up various scenarios with
1 to 5 random obstacles, which are different objects sampled
from YCB dataset as obstacles [25], with their corresponding
point clouds provided. For each number of obstacles and
each robot, we generate 100 scenarios for experiments. An
example of the scenarios is shown in Fig. 1a. Each scenario is
generated as follows. We first place the robot at the origin of
the world frame and randomly sample a path of N waypoints
from a uniform distribution over the space of joint angles.
We then randomly generate obstacles within the workspace
of the robot that are collision-free with respect to the random
path to ensure the generated problem instance is feasible. The
MoveIt! collision checker [26] is used to check for collisions.
The point cloud of the obstacles is downsampled using a
voxel grid filter with a grid leaf size of 0.1m.

Algorithm 1 PDOMP

1: λ← 0, µ← 0, ρ← 1, ϕ← 10.
2: Initialize s with linear interpolation.
3: while |d′(ω∗)| ≥ dtol or |c(ω∗)| ≥ ctol do
4: for k = 2, ..., N do
5: ωk ← ωk−1 + sk−1

6: Compute uk using Eq. 15a.
7: Compute d(ωk) with uk using Eq. 5b and Eq. 5a.
8: end for
9: Compute c(ωN ) using Eq. 14.

10: Compute Jlength and Jinitial using Eq. 12 and Eq. 13.
11: Compute Lρ using Eq. 17.
12: ∇ωN

c(ωN )← 2(ωN − ω∗
N ).

13: for k = N, ..., 2 do
14: Compute ∇ωk

d(ωk) using Eq. 15b.
15: Compute ∇ωk

Lρ using Eq. 18.
16: if k < N then
17: Compute ∇skLρ using Eq. 19.
18: end if
19: end for
20: Update s∗ with L-BFGS based on Lρ and ∇sLρ.
21: λ← λ+ ρc(ω∗), µ← µ+ ρd′(ω∗)
22: ρ← ϕρ
23: end while
24: Recover θ∗ using Eq.1.
25: return θ∗

We compare our method with CHOMP [1] and RRT-
Connect [7]. We set N = 100 for both our method and
CHOMP, and use linear interpolation for initialization. The
parameters β1, β2 in Eq. 16 are set to 0 and 1 respectively.
The constraint penalty tolerance ctol and d′tol are set to 10−4.
Additionally, we tested both our method and CHOMP using
the solutions from RRT-Connect as the initial guess, de-
noted as “RRTConnect+Ours” and “RRTConnect+CHOMP,”
respectively. The objective function of these two methods is a
weighted sum of the prior path similarity and the path length
objective. We set β1 in Eq. 16 as 1, and β2 as 0.01 for the
KUKA robot, and 0.1 for the UR10 and Franka robots. Both
CHOMP and RRT-Connect are from the Moveit! motion
planning library. All methods are implemented in C++ and
tested on a desktop computer with an Intel Core i9 CPU and
128 GB of RAM.

B. PDOMP vs Baselines

We measure the performance of all methods using three
criteria. First, we report the failure rate as the percentage of
experiments that fail to provide a solution within the time
limit, which is set to 10 seconds, or result in a solution that
collides with the obstacles. The Moveit! collision checker
[26] is used to verify collisions along the entire continuous
path. Second, we report the logarithm of runtime, log10 T ,
where T is the median value in milliseconds for all collision-
free solutions. For the methods RRTConnect+Ours and RRT-
Connect+CHOMP, the runtime is the sum of the runtimes of



K
U

K
A

U
R

10
F

ra
nk

a
100

0

50

100

0

50

100

0

50

104

103

102

101

104

103

102

101

104

103

102

101

5.5

5.0

4.5

13.5

11.5

9.5

6.0

5.5

5.0

x-axis: number of obstacles Ours RRT-Connect + OursCHOMP RRT-Connect + CHOMPRRT-Connect

Failure Rate (%) Log10 of Runtime (ms) Path L1 Length (rad)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Fig. 3: We compare our method with baselines on three robot platforms: Franka, UR10, and KUKA. Three criteria are
applied to measure the performance: failure rate, path length, and algorithm runtime. For all criteria, lower values indicate
better performance.

TABLE I: Ablation studies on runtime of the algorithm
Method Propagation Compact Representation Runtime - KUKA (ms) Runtime - UR10 (ms) Runtime - Franka (ms)

Full Pipeline ✓ ✓ 5.14± 1.58 17.67± 9.98 2.25± 0.38
Baseline 1 × ✓ 912.95± 79.77 1831.76± 262.15 988.98± 137.96
Baseline 2 × × 2834.08± 311.87 6975.25± 1429.96 3091.67± 358.24

RRTConnect and the respective local planners. Lastly, we
report the median value of L1 path length for all methods.

As shown in Fig. 3, our method with linear initialization
is up to 100 times faster compared to CHOMP, and up
to 10 times faster than RRT-Connect. When comparing
with CHOMP, our method demonstrates a lower failure rate
and a comparable path length. When comparing with RRT-
Connect, our method achieves a shorter path length at the
cost of a higher failure rate. This is because RRT-Connect,
as a global planner, is more likely to find a feasible solution
but tends to produce jagged paths.

When using RRT-Connect to provide an initial solution,
our method achieves up to a 50% lower failure rate than RRT-
Connect, while maintaining comparable runtime and slightly
shorter path lengths. In contrast, RRT-Connect+CHOMP fails
to achieve similar improvement: its failure rate is not lower
than that of RRT-Connect, and its runtime is much longer.

This result highlights the advantages of our method: when
building a path from scratch, our method achieves much
faster speeds than the baselines. When updating an initial
path provided by global planners, our method can improve
the quality of the initial solution with almost negligible
additional runtime.

C. Ablation Study of PDOMP
We then demonstrate the effectiveness of the two tech-

niques introduced in this paper: The propagative compu-
tation (Sec. III-B) and compact representation of variables
(Sec. III-D). We compare our method with two baselines:
Baseline 1 eliminates the propagation process and instead
uses finite differences to compute the Jacobian. Baseline 2
further eliminates the compact representation of variables
and employs the same representation method as in [20]. All

methods are tested on KUKA, UR10, and Franka robots.
We set the number of obstacles to 1 and tested 50 random
scenarios. The number of waypoints N is set to 10.

The comparison of runtime is shown in Tab. I. Baseline
1 is 3.1 to 3.8 times faster than Baseline 2 with similar
success rate and path length. This is due to the application
of compact variable representation. The full pipeline is up to
100 to 400 times faster than Baseline 1 due to the application
of the propagation technique. The propagative computation
greatly improves speed due to (1) its time efficiency, achieved
through lower time complexity compared to finite difference
[20], and (2) its space efficiency, enabled by reusing inter-
mediate variables that avoids memory allocation overhead.

VI. CONCLUSION

This paper proposes a novel motion planning method
PDOMP that extends distance-based formulations to motion
planning in a computationally efficient way. PDOMP intro-
duces a new angle representation for distance-based methods
that reduces the number of variables needed. PDOMP also
extends the propagation approach to achieve propagation
computation between waypoints along the path. Both of
these two techniques improve the runtime efficiency of
the algorithm and lead to a fast motion planner. Although
PDOMP still faces the limitation that its speed decreases
as the number of obstacles increases, we believe this can
be addressed through parallel collision checking approaches,
which presents an exciting direction for future work. Further-
more, extending PDOMP to diverse robotic platforms (e.g.,
floating base robots and parallel robots) and constraints (e.g.,
dynamic constraints and end effector pose constraints) will
be further considered in the future.
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“Inverse kinematics for serial kinematic chains via sum of squares
optimization,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 7101–7107.

[17] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-
prune solver for distance constraints,” IEEE Transactions on Robotics,
vol. 21, no. 2, pp. 176–187, 2005.

[18] G. M. Crippen, T. F. Havel et al., Distance geometry and molecular
conformation. Research Studies Press Taunton, 1988, vol. 74.

[19] M. J. Sippl and H. A. Scheraga, “Cayley-menger coordinates.” Pro-
ceedings of the National Academy of Sciences, vol. 83, no. 8, pp.
2283–2287, 1986.

[20] Y. Chen, Y. Cai, J. Xu, Z. Ren, G. Shi, and H. Choset, “Propaga-
tive distance optimization for constrained inverse kinematics,” arXiv
preprint arXiv:2406.11572, 2024.

[21] T. Weisser, J. B. Lasserre, and K.-C. Toh, “Sparse-bsos: a bounded
degree sos hierarchy for large scale polynomial optimization with
sparsity,” Mathematical Programming Computation, vol. 10, pp. 1–
32, 2018.

[22] J. J. Craig, Introduction to robotics. Pearson Educacion, 2006.

[23] J. Han and C. Moraga, “The influence of the sigmoid function
parameters on the speed of backpropagation learning,” in International
workshop on artificial neural networks. Springer, 1995, pp. 195–201.

[24] J. E. Dennis, Jr and J. J. Moré, “Quasi-newton methods, motivation
and theory,” SIAM review, vol. 19, no. 1, pp. 46–89, 1977.

[25] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M.
Dollar, “The ycb object and model set: Towards common benchmarks
for manipulation research,” in 2015 international conference on ad-
vanced robotics (ICAR). IEEE, 2015, pp. 510–517.

[26] I. A. Sucan and S. Chitta. "moveit". [Online]. Available: moveit.ros.org

moveit.ros.org

	Introduction
	Related Works
	Distance-Based Kinematic Formulations
	Motion Planning for Serial Articulated Robots

	Formulations
	Basic Concepts and Notations
	Graph of Distance
	Constraints at One Waypoint
	Robot kinematics constraints
	Collision avoidance constraints

	Compact Representation of Joint Angles
	Redundancy in the formulation
	Compact Representation

	Constraints of the Path
	Propagation Computation Along the Path

	Algorithm
	Experimental Results
	Experimental Settings and Baselines
	PDOMP vs Baselines
	Ablation Study of PDOMP

	Conclusion
	References

