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Abstract— This paper considers a multi-robot trajectory
planning problem with inter-robot connectivity maintenance
for information gathering. Given an information map in the
form of a distribution over the workspace, ergodic search
plans trajectories, along which, the time spent in any region is
proportional to the amount of information in that region, and
can balance between exploration and exploitation. Existing er-
godic search rarely considers the limited communication range
among robots or connectivity maintenance, and this paper
takes a step to fill this gap. Besides, multi-robot connectivity
maintenance was studied a lot, including continual, periodic,
intermittent connectivity, etc. Naively combining these methods
with ergodic search may prevent the planner from finding
high-quality ergodic trajectories or lead to poor connectivity
among the robots. To handle the challenge, this paper adapts
an intermittent connectivity maintenance strategy to the er-
godic search framework, and develops a two-phase trajectory
planning approach utilizing the augmented Lagrangian method.
Our simulation and real drone experiments show that under
the same connectivity maintenance requirement, our approach
plans trajectories that are about 10 times better than the
baselines in terms of the ergodic metric.

I. INTRODUCTION

This paper studies a multi-robot trajectory planning prob-
lem for information gathering subject to connectivity mainte-
nance constraints, which arise in applications such as explo-
ration [1], and search and rescue [2]. Using an information
map to describe the prior knowledge in the form of a
distribution over the area to be searched, this paper aims to
plan trajectories for the robots to collect information within
this map and establish the robot-robot connection when
needed to exchange information. Existing approaches for
information-gathering range from spatial decomposition [3],
[4] , which uniformly covers the area, to information-
theoretic approaches [5], [6], which greedily direct the robot
to the next location with the highest information gain. Dif-
ferent from these methods, ergodic search [7], [8] provides
an approach that can inherently balance between exploration
(visiting all possible locations for new information) and ex-
ploitation (greedily searching high-information areas), which
plans trajectories by optimizing an ergodic metric so that the
time spent in any region is proportional to the amount of
information in that region.
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Fig. 1. A motivating example. (a): Mountainous area with three regions
to be searched. (b): Drones are connected while gathering information. (c):
Drones disconnect to gather information in different regions. (d): Drones
reconnect to share the collected information. The planner needs to handle
both connectivity maintenance and information gathering.

Although ergodic search has been investigated from var-
ious perspectives [8]–[15], most of them either ignore the
limited connectivity among robots [12], [13], assuming all
robots are connected with a central communication hub at
all times [10], [11], or require all robots to stay connected
with pre-determined and fixed topology [14]. [15] implicitly
guarantees the connectivity asymptotically through the de-
centralized ergodic control algorithm. This paper aims to let
the robots determine flexibly when and where to establish
connections during the ergodic trajectory optimization.

To achieve this goal, we investigate how to adapt the ex-
isting intermittent connectivity maintenance approach within
the ergodic search framework, and propose a method named
Ergodic Search with Relaxed Periodic Connectivity (ESPC),
which determines the location and time for inter-robot con-
nection during the ergodic trajectories optimization. Fig. 1
shows the motivation example. First, ESPC introduces the
notion of relaxed periodic connectivity, an adapted version
of intermittent connectivity for continuous trajectory opti-
mization, where any pair of robots should have their distance
smaller than the communication range at least once within
each relaxed period, which constitutes the optimization ob-
jective, i.e., connectivity cost. We then approximate this
binary connectivity cost using the Sigmoid function so that
the gradient can be obtained for trajectory optimization.
Second, ESPC uses a two-phase solving approach based
on the augmented Lagrangian method so that the resulting
trajectories can converge to a local minimum with a low
ergodic metric while maintaining connectivity.

To verify our approach, we combine ergodic search with
two existing connectivity maintenance strategies in the lit-



erature [16], [17] as the baselines, which let all robots
meet at certain locations periodically, i.e., at fixed time
intervals. We then compare them in both simulations and
drone experiments under various settings. Results show that,
under the same connectivity maintenance requirement, our
approach plans better trajectories whose ergodic metrics are
about 10 times smaller than the baselines. Both Gazebo
simulation and drone experiments in a lab setting verify that
the planned ergodic trajectories of the robots are executable
while intermittent connectivity is maintained.

A. Related Work

Connectivity maintenance has been studied a lot [18]–[21]
and combined with information gathering [16], [22], [23],
task planning [17], or environment exploration [24]–[26].
Some of them require all robots to stay connected at all times
(i.e., continual connectivity) [19], [20] , which is suitable for
communication critical missions, but usually hinders robots
from dispersing to gather information quickly, especially in a
large workspace with distributed information. Additionally,
the informative path planning method with periodic con-
nectivity in [23] requires all robots to regain connectivity
at a pre-defined fixed interval. However, the connectivity-
constrained feasible paths are planned through sampling or
enumerating rather than optimizing with nonlinear robot
dynamics. Besides, intermittent connectivity [21] is widely
studied, which enables robots to meet at some locations over
time, infinitely often. The communication schedules with
the sampling-based path planning method [22] or predefined
communication points set [17] were also investigated. Other
studies on connectivity maintenance include choosing ren-
dezvous locations [26], finding a ground robot [25], and
planning reconnection paths [16].

Despite extensive research on intermittent connectivity
maintenance, most existing methods [17], [22], [23] rely
on sampling-based approaches for connection establishment,
making them unsuitable for ergodic trajectory optimization
problems typically solved through iterative gradient descent.
Furthermore, some optimization-based studies focus on max-
imizing the Fiedler value of the connectivity graph, primarily
designed for continual connectivity scenarios [20].

II. PRELIMINARY

A. Workspace and Robot Dynamics

Let the index set IN = {1, 2, · · · , N} denote a set
of N robots. Let W = [−L′

1, L
′′
1 ] × · · · × [−L′

ν , L
′′
ν ] ⊂

Rν , L′
ν , L

′′
ν ∈ R+, ν ∈ {2, 3} denote a ν-dimensional

workspace that is to be explored by the robots, where Lν =
||L′′

ν + L′
ν || is the length of the workspace along the ν-th

dimension. This paper uses a superscript i over a variable
to indicate the robot associated with the variable. For robot
i ∈ IN , let xi : [0, T ] → X ⊆ Rn, n ∈ Z+, n ≥ ν denote
the state trajectory within the time horizon T ∈ R+, and
let ui : [0, T ] → U ⊆ Rm,m ∈ Z+ represent the control
trajectory. All robots are homogeneous in the sense that each
robot i ∈ IN has the same deterministic dynamics ẋi(t) =
f(xi(t), ui(t)). Additionally, let qi : [0, T ]→W denote the

corresponding trajectory of robot i in the workspace, and let
g : X → W denote a map from a state to the corresponding
location in the workspace, i.e., qi(t) = g(xi(t)).

Let x = (x1, · · · , xN ) denote the joint state trajectory of
all robots. Similarly, let u = (u1, · · · , uN ) denote the joint
control trajectory. Let q = g(x) = (g(x1), · · · , g(xN )) =
(q1, . . . , qN ) denote the joint trajectory in the workspace.
Finally, let ẋ(t) = F (x(t), u(t)) denote all robots’ dynamics.

B. Ergodic Search
Let ϕi(w) : W → R+

0 denote an information map to
be explored by robot i ∈ IN , which is a known time-
invariant probability distribution over the workspace with∫
W ϕi(w)dw = 1 and ϕi(w) ≥ 0,∀w ∈ W . Intuitively,
ϕi(w) provides the information density at each location in
the workspace. Let δ(w) denote the Dirac delta function,
which satisfies

∫ +∞
−∞ δ(w)dw = 1, δ(0) = +∞ and δ(w) =

0 when w ̸= 0. Let c(w, qi) denote the time-averaged
statistics of the trajectory qi, which is defined as follows.

c(w, qi) =
1

T

∫ T

0

δ(w − qi(t))dt (1)

Then, the ergodic metric [7] can measure the coverage of the
information map ϕi by the trajectory qi:

E i(ϕi, qi) =
∑

k∈K

Λk(c
i
k − ϕi

k)
2 (2)

=
∑

k∈K

Λk

(
1

T

∫ T

0

Fk(q
i(t))dt−

∫

W
ϕi(w)Fk(w)dw

)2

where cik and ϕi
k are the Fourier coefficients of c(w, qi) and

ϕi(w), respectively. k = [k1, · · · , kν ] ∈ K is the frequency
vector, and K ⊂ Nν represents the set of considered
frequencies. Fk(w) = 1

hk

∏ν
o=1 cos

πkowo

Lo
is the cosine

basis function with the normalization term hk [7]. Λk =
(1+∥ k ∥22)−(ν+1)/2 is the weight of each Fourier coefficient.
The multi-robot ergodic search problem is formulated as:

Problem 1 (Multi-Robot Ergodic Search).

min
x,u

∑

i∈IN

E i(ϕi, qi) (3a)

s.t. x(0) = x0 (3b)
ẋ = F (x, u) (3c)

||qi(t)− qj(t)|| ≥ εd, i ̸= j ∈ IN , t ∈ [0, T ] (3d)

xi ∈ X , ui ∈ U ,∀i ∈ IN (3e)

where the objective (3a) is the sum of all robots’ ergodic
metrics, (3b) specifies the initial states of all robots, (3c)
represents the robots’ dynamics constraints, (3d) ensures
robot-robot collision avoidance with a tolerance of εd ∈ R+,
and (3e) bounds the state and control.

Besides, when the information maps of all the robots are
the same, i.e., ϕ1 = · · · = ϕN , we use ϕ̄ to denote this
common information map. The objective for Problem 1 in
this case, can be written as follows.

E(ϕ̄, q) =
∑

k∈K

Λk(c̄k − ϕ̄k)
2 (4)



where c̄k = 1
N

∑
i∈IN

cik is the average of all robots’ cik and
ϕ̄k is the Fourier decomposition of ϕ̄(w).

III. RELAXED PERIODIC CONNECTIVITY

A. Relaxed Connection Period

Let dij(t) = ||qi(t) − qj(t)||2 denote the Euclidean
distance between any two robots i, j ∈ IN , i ̸= j at time
t. Let Rc ∈ R+, a known constant number, denote the
connection range. When any two robots are within the range
(i.e., dij(t) ≤ Rc), these two robots are said to be connected
and can communicate with each other. In addition, let the
binary variable s(i, j, t) ∈ {0, 1} denote whether the robots
i and j are connected at time t (s(i, j, t) = 1) or not
(s(i, j, t) = 0).

Let the time horizon T be evenly divided into Np ∈ Z+

periods, where each period is of length Tp = T/Np. A
time point t belongs to the p-th period if (p − 1)Tp <
t ≤ pTp, p ∈ Ip = {1, 2, · · · , Np}. Simply requiring that
every pair of robots connect at any time during each period
may result in a situation where two robots connect near
the end of the p-th period and then again at the beginning
of the (p + 1)-th period. The interval between these two
subsequent connections can be small, which is undesired.
Therefore, we introduce a user-defined parameter τ ∈ [0, 1]
and require that any pair of robots connect within the time
range Tp,τ := [(p − τ)Tp, pTp] for the p-th period. We call
the range Tp,τ a relaxed connection period. When τ = 0,
Tp,τ becomes a singleton time point and leads to the notion
of periodic connectivity in the literature [23], which requires
every pair of robots to connect at pre-determined intervals.
Finally, note that the relaxed periodic connectivity does not
require all robots to be connected at the same time point.
The motivation behind relaxed connection periods is to let
the robots connect intermittently with certain intervals for
information sharing while avoiding imposing hard constraints
at fixed connection time points, which allows the robots to
determine when to connect flexibly.

B. Connectivity Cost

Robots i, j ∈ IN , i ̸= j are connected in the p-th period
if there exists a time point t ∈ Tp,τ such that s(i, j, t) = 1.
The connectivity cost ccon(i, j, p) between robot i and j of
the p-th relaxed connection period is defined as:

ccon(i, j, p) =

{
0, if s(i, j, t) = 1,∃t ∈ Tp,τ

1, other
(5)

Any pair of robots are connected in the p-th period if there
exists a set of time points ti,j ∈ Tp,τ , i, j ∈ IN , i ̸= j in
the p-th period such that robots i, j are connected at time
ti,j . For all robots and all periods, the total connectivity cost
Ccon is defined as:

Ccon =
∑

i∈IN

∑

j∈IN ,j ̸=i

∑

p∈Ip

ccon (i, j, p) (6)

The ergodic search problem with relaxed periodic connec-
tivity is formulated as follows.

(a) (b)

Fig. 2. An illustration of the connectivity cost for the p-th period. (a): The
Sigmoid function σ converts the discrete value 1−s(i, j, t) to a continuous
value between 0 and 1 based on the distance dij . (b): Dp,τ in Eq. (9) stores
the sampled time points from Tp,τ , where τ constrains the length of Tp,τ .

Problem 2 (Multi-Robot ESPC Problem).

min
x,u

Ccon (7a)

s.t. (3b), (3c), (3d), (3e) (7b)

E i(ϕi, qi) ≤ E im,∀i ∈ IN (7c)

where (7b) inherits from Problem 1, and (7c) constrains the
ergodic metric within tolerable limits E im. Note that when the
information map is ϕ̄, (7c) can be written as E(ϕ̄, q) ≤ Em.

Remark 1. Combining ergodic search with connectivity
maintenance involves optimizing two objectives (often com-
petitive due to dispersed information in the workspace):
minimizing the ergodicity and the total connectivity cost.
Instead of combining them into a single or bi-objective
formulation, we approach it as a constrained optimization
problem, treating Ccon as the objective (soft constraint)
and ergodicity as the constraint. The intuition behind this
choice is as follows. Ergodic trajectory optimization often
yields multiple local minima with similar ergodicity. The
constrained optimization formulation allows our planner to
explore different local minima so that the connections among
the robots are established while the ergodicity is maintained
at a low value. In other words, the goal is to find an
alternative solution under the constraint (7c) with limits E im
(discussed in Sec. V-A.4).

IV. OPTIMIZATION ALGORITHM

The binary variables ccon(i, j, p) in the objective of Prob-
lem 2 are non-differentiable and prevent the use of trajectory
optimization techniques. We first use a continuous function
to smooth s(i, j, t), then describe the trajectory optimization.

A. Continuous Approximation of Connectivity Cost

As shown in Fig. 2a, this paper uses the Sigmoid function
σ : R→ R to approximate 1−s(i, j, t) based on the distance
dij(t) between robots i, j. Specifically, let

h(i, j, t) = σ(dij(t)) =
1

1 + e−ρ(dij(t)−Rc)
(8)

where ρ ∈ R+ is a constant coefficient affecting the shape
of the Sigmoid function, indicating the sensitivity to dij(t)
around Rc. The continuous range of h(i, j, t) is [0, 1], taking
value 0 when dij(t)≪ Rc and 1 when dij(t)≫ Rc.

Within the relaxed period Tp,τ , a pair of robots is con-
nected if there exists at least a time point t ∈ Tp,τ such that



Algorithm 1 Two-Phase Approach
1: IN , Ip, τ ← Initial parameters
2: x = xinit, u = 0← Initial state and control ▷ Phase 1
3: Solve Problem 1 with maximum iteration K using Alg. 2
4: x⋆, u⋆, Ei⋆, i ∈ IN ← Get solution and metric
5: Eim, i ∈ IN ← Initial ergodic metric limits ▷ Phase 2
6: Solve Problem 2 with maximum iteration K using Alg. 2

with initial guess x⋆, u⋆, and limits Eim, i ∈ IN
7: xc, uc, Eic, i ∈ IN ← Get solution and metric

dij(t) ≤ Rc. We formulate this condition by first uniformly
sampling a set of time points Dp,τ from Tp,τ (refer to Fig.
2b), and then taking the product of the h(i, j, t) value at
those sampled time points. Then, the connectivity cost (5)
can be approximated by a continuous function chcon(i, j, p):

chcon(i, j, p) =
∏

t∈Dp,τ

h(i, j, t) (9)

If there is at least a time point t ∈ Tp,τ such that dij(t) ≤ Rc,
the corresponding h(i, j, t) takes a near-zero value and can
lower the value of chcon(i, j, p), resulting in a low connectivity
cost. Finally, similar to (6), let Ch

con =
∑

chcon (i, j, p) denote
the approximated total cost.

B. Two-Phase Approach

Directly solving Problem 2 with a random initial guess
may lead to dynamically infeasible trajectories with high
connectivity cost, or make the computation time-consuming
(Refer to Sec. V-C.5). We thus develop a two-phase ap-
proach, where the first phase computes a dynamically feasi-
ble ergodic trajectory x⋆ by solving Problem 1 that ignores
the connectivity maintenance requirement. Then the second
phase uses x⋆ as the initial guess to solve Problem 2 to
reduce the connectivity cost while ensuring that the trajec-
tories are still dynamically feasible and the ergodic metric
stays within tolerance E im.

Specifically, the first phase (Line 2-4 in Alg. 1) solves
Problem 1 to obtain the joint control trajectory u⋆ =
(u1

⋆, · · · , uN
⋆ ), joint state trajectory x⋆ = (x1

⋆, · · · , xN
⋆ ), and

the corresponding ergodic metric E i⋆, i ∈ IN , where the initial
guess is set with x(t) = x0, t ∈ [0, T ] and a zero control
input u = 0 in this paper. Note that other initial guesses
can also be used for phase 1, e.g., random controls. Phase
2 (Line 5-7 in Alg. 1) sets x⋆, u⋆ as the initial guess to
solve Problem 2. In this phase, the augmented Lagrangian
method (ALM) incorporates the ergodic constraint (7c) into
the Augmented Lagrangian Function.

C. Optimization Method

On Lines 3 and 6 of Alg. 1, any nonlinear optimizer can
be used. The optimization method used in this paper converts
the constrained optimization problem into an unconstrained
one based on ALM. To simplify the presentation, we omit the
constraints (3b,3d,3e) of Problem 2 when presenting ALM,
and explain the ideas via the dynamics constraints (3c) and
the ergodic metric constraints (7c). Constraints (3b,3d,3e) are
handled similarly in our implementation.

Algorithm 2 Iterative Optimization
1: x,u,O, λ, µ, α̂, r, εC , ℏ,← Initial parameters
2: C(x,u) =

∑
k∈INT

||hk||2 +
∑

i∈IN
||ci||2

3: while C(x,u) ≥ εC do ▷ With maximum iteration K
4: x′,u′ ← argminx,u Lr(x,u, λ, µ) by O, see (10)
5: if C(x,u)− C(x′,u′) ≥ ℏ then
6: Update λk, k ∈ INT and µi, i ∈ IN through (11)
7: else
8: Update penalty r ← α̂ · r
9: x← x′,u← u′

1) Numerical Integration of the Dynamics: We numeri-
cally integrate the dynamics to convert the trajectory opti-
mization to a nonlinear optimization problem over a finite
number of trajectory points. Let δt = T/NT denote the
time step size, where NT is the number of time steps. Let
x = (x(0); · · · ;x(NT ·δt)),u = (u(0); · · · ;u((NT−1)·δt))
denote a matrix that stacks all discrete states and controls,
and xk,uk denote the k-th vector of x,u. This paper uses
the Euler method for integration, i.e., xk+1 = xk + δt ·
F (xk,uk),∀k ∈ INT

= {0, 1, · · · , NT − 1}, and the control
input uk is a constant between two subsequent time steps
(often referred to as the zero-order hold).

2) Augmented Lagrangian Function: Let hk(x,u) =
xk+1 − (xk + δt · F (xk,uk)) , k ∈ INT

denote the k-th
dynamic (equality) constraint. Let ci(x,u) = E i(ϕi, qi) −
E im, i ∈ IN denote the i-th ergodic metric (inequality)
constraint. Based on the formulation of Problem 2, the aug-
mented Lagrangian function is formulated as follows [27].

Lr(x,u, λ, µ) =Ch
con +

∑

k∈INT

{λkhk +
r

2
h2
k} (10)

+
∑

i∈IN

{µi(ci + si) +
r

2
(ci + si)

2}

where λk and µi ≥ 0 are the Lagrange multipliers related
to the k-th equality constraint hk, and the i-th inequality
constraint ci, and r ≥ 0 is a penalty factor that penalizes
the violation of the constraints with second-order terms.
Each λk is a vector corresponding to the state xk. Here,
si = max{−µi/r − ci, 0} is a slack variable [27], which
is zero when the constraint is active (ci > 0) and has no
effect on the optimum of the objective when the constraint
is inactive. During the optimization, the penalty terms in
(10) are increased for the violation of the constraints through
r ← α̂ · r, where α̂ ∈ [1,+∞).

3) Iterative Optimization: On Line 4 of Alg. 2, the
objective (10) is minimized using optimizer O. If x,u
are updated only once after the gradient of the objective
(10) with respect to x,u is computed, it may lead to
slow convergence or even non-convergence. Besides, com-
puting the gradient frequently and then updating x,u with
a fixed step size may trap the optimization into a local
optimum. To remedy these difficulties, we use the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) al-
gorithm [28] with line search as the optimizer O [29]. By
approximating the Hessian of the objective (10), L-BFGS



Fig. 3. Robots explore the common information map ϕ̄ using different methods (Row 1-4: Ergodic Search, Baseline 1: robots connect within the same
predefined area periodically, Baseline 2: robots connect periodically considering minimal reconnection paths, ESPC: robots connect intermittently within
different areas) and the different maps ϕi with our ESPC (Row 5). In subfigure (u), as indicated by the numbered labels, each robot has its information
map, which is a mixture of Gaussian: ϕ1 : 1, 6; ϕ2 : 2, 3; ϕ3 : 1, 5; ϕ4 : 2, 4. The first four columns represent the trajectories of four connection periods,
where the dot and asterisk represent the start and end of the trajectory during the p-th period, respectively. The last column shows the distance between
all pairs of robots during all periods, i.e., dij(t), t ∈ [0, T ]. The asterisk and red dash line represent the end of each period and the connection range,
respectively. dij(t) is used to determine connectivity; for example, dij(t) ≤ Rc indicates that robots i and j are connected at time t.

provides an accurate update direction and is able to expedite
the convergence.

Here, C(x,u) on Line 2 in Alg. 2 is to compute the sum of
equality and inequality constraints error for the optimization
problems. The multipliers λk, µi, and the penalty factor r
are updated based on the decreasing value of C(x,u), when
it’s greater than a user-specified tolerance ℏ ∈ R+ as [27]:

λk ← λk + r · hk, µi ← max{0, µi + r · ci} (11)

The initial values of λk, µi, r are 0, 1, 1 in this paper,
respectively. Although the objective Ch

con and constraints of
Problem 2 are optimized simultaneously through the function
(10), the constraints must be strictly satisfied for trajectory
optimization problems. The optimization terminates when
C(x,u) < εC in this paper, i.e., the constraints error is
within a hyperparameter εC ∈ R+.

V. EXPERIMENTAL RESULT

A. Experiment Settings

1) Robot Dynamics: Our tests consider quadrotors. The
state of robot i is xi = (qi,Rot

i
, vi, ωi), where qi, vi, ωi

denote the position, velocity, and angular velocity. Rot
i

represents the flattened vector of the rotation matrix Roti ∈
SO(3). Additionally, the control is defined as the forces
provided by the four motors, i.e., ui = (ui

1, u
i
2, u

i
3, u

i
4),

which are used to generate the total thrust and moments. The
dynamic equations are the same as those defined in [30].

2) Experiment Parameters: We consider a workspace
of size W : [−5, 5] × [−5, 5] × [0, 3] m3. The physical
parameters of the quadrotor, such as mass, inertia, and others,
match those defined in Crazyswarm2 [31]. Besides, each
robot i has state and control limits ui(t) ∈ [0,0.1] N,
velocity vi(t) ∈ [0,0.8] m/s, and angular velocity ωi(t) ∈
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Fig. 4. The ergodic metrics E⋆ (Ergodic search without connectivity maintenance), EB1 (Baseline 1), EB2 (Baseline 2), and Ec (ESPC) with varying
period number Np and varying number of robots N . (a): All robots explore the same information map ϕ̄ as in Row 1-4 (a-t) of Fig. 3. (b): Each robot
explores its map ϕi, i ∈ IN as in Row 5 (u-y) of Fig. 3. (c): With Np = 4, the ergodic metric as the number of robots varies.

[0, (0.2, 0.2, 0.4)] rad/s, where bold letters indicate vectors.
The initial state is defined as xi

0 = [qi0,E3,0,0], where
qi0 is the initial location and E3 is the unit matrix of
order 3. Other parameters are set as follows: frequency
set: K = [0, · · · , 8] × [0, · · · , 8] × 0, connection range
Rc = 1.5 m, collision avoidance tolerance εd : 0.5 m,
constant in (8): ρ : 2.0, time related constants τ : 0.5
(see Fig. 2b), T : 60 s, δt : 0.5 s, factor in Alg. 1 and 2
K : 50, α̂ : 1.5, εC = 0.01T/δt ·N, ℏ = εC .

3) Additional Height Constraint: The workspace dimen-
sion is ν = 3 in this paper, for the height (i.e., z dimension),
we add a constraint (qz −H)

2 ≤ εH , where qz , H = 1.0 m,
and εH = 10−3 m denote the trajectory height, desired
height, and height deviation, respectively. This constraint
ensures qz (the height of the robots) is around a constant H .
Specifically, it constrains the robots to fly within H ±√εH
in both simulation and hardware experiments.

4) Selection of Em: The parameter E im, i ∈ IN can be set
in different ways. One possibility is to inflate the ergodic
metric E i⋆ obtained from the first phase by a factor (1 +
km), km ≥ 0, i.e., E im = (1 + km)E i⋆. In our experiments,
our goal is to compare different methods, and we set E im
as follows. Let E iB denote the ergodic metric obtained by a
baseline method discussed in Sec. V-B, E im for robot i is
then set as E im = Clip(γ · E iB , E i⋆, E iB), where γ ∈ [0, 1], and
Clip restricts the value of the variable γ · E iB to the interval
[E i⋆, E iB ]. Therefore, it ensures γ ·E iB lies between E i⋆ and E iB .
In our test, we can continually enlarge E im by adjusting γ to
optimize the connectivity cost and constrain the ergodicity
until ESPC maintains connectivity in all periods. This design
allows us to compare ESPC with the baselines more easily.

B. Baseline Methods: Periodic Connection

1) Baseline 1: This baseline differs from ESPC by enforc-
ing (hard) connection constraints at certain time points during
ergodic search. A common strategy to maintain connectivity
is to navigate all robots periodically to the same predefined
area with small change between the previous trajectories and
the modified trajectories for connection (similar to [16]).
Let qcen⋆,ν (t) = 1

N

∑
i∈IN

qi⋆,ν(t) denote the average of
the positions of all robots along the ν-th dimension at

time t, where qi⋆,ν(t) is the ν-th dimension of position
qi⋆(t) = g(xi

⋆(t)) obtained by solving Problem 1, and q⋆ =
(q1⋆, q

2
⋆, · · · , qN⋆ ) denote the joint trajectory. Baseline 1 mini-

mizes the quadratic objective (q − q⋆)
TQ(q−q⋆) with a unit

penalty matrix Q while maintaining connectivity periodically
by adding the constraint

∑3
ν=1

(
qiν(pTp)− qcen⋆,ν (pTp)

)2 ≤
R2

c/4. This constraint ensures all robots connect periodically
in a sphere (related to ν) with Rc being the sphere diameter,
and the sphere is centered on the geometric center of the
trajectory qi⋆ for all robots i ∈ IN at the end of each period
t = pTp,∀p ∈ Ip. The other constraints are the same as
in Problem 1. We use Alg. 2 to solve the problem, and the
initial guess is set to x⋆, u⋆.

2) Baseline 2: Baseline 2 minimizes the sum of each
robot’s ergodic metric, i.e.,

∑
i∈IN

E i(ϕi, qi) with a periodic
connection constraint. The constraint requires all robots to
meet at Sdes, a pre-defined sphere centered on qdes ∈ W
with the diameter Rc, at periodic time points t = pTp,∀p ∈
Ip, i.e.,

∑3
ν=1

(
qiν (pTp)− qdesν

)2 ≤ R2
c/4,∀p ∈ Ip. The

idea is similar to [17], where connection locations are defined
as sets for each robot pair (sub-team). In our tests, we set
qdes = [0, 0, H], which is the center of the workspace. The
other constraints are the same as those in Problem 1, and the
initial guess is set to x(t) = x0, t ∈ [0, T ] and u = 0.

3) Baseline 3: Baseline 3 directly solves Problem 2
without using the two-phase (i.e., first solve Problem 1 and
then Problem 2). Introducing this baseline method aims to
verify the benefit of using two-phase optimization, and the
result is shown in Sec. V-C.5. In our tests, Baseline 3 solves
Problem 2 with the initial guess x(t) = x0, t ∈ [0, T ], u = 0.

C. Numerical Results

1) Overview: Fig. 3 shows the robots’ trajectories and
inter-robot distances obtained by different methods within
four periods (Np = 4) and four robots (N = 4). For the first
four rows (a-t), all robots explore the common information
map ϕ̄. For the last row (u-y), each robot has its information
map ϕi, i ∈ IN to be explored.

In Row 1 (a-d), all robots seek to plan ergodic trajectories
without considering connectivity maintenance. The solution
trajectories x⋆, u⋆ are planned by the phase 1 optimization,



Fig. 5. The hardware experiment of ESPC with N = 4 and Np = 4. In Row 1, the solid and dashed lines represent the planned reference trajectories
and the actual trajectories. Row 2 shows the trajectories of the quadrotors.

and the inter-distance (e) is often greater than Rc, indicating
poor connectivity. For Baseline 1 and 2, (j) and (o) show
that the inter-distance dij(t), i, j ∈ IN , i ̸= j, is periodically
less than Rc. In Row 4 (p-s), our method ESPC plans the
trajectories by optimizing the ergodic metric and the con-
nectivity cost, where the connection locations differ for each
period and the inter-distance (t) is still less than Rc within
each relaxed connection period. The trajectories shown in
(p-s) are the solution after phase 2 optimization, seeded by
x⋆, u⋆ as the initial guess. And the different trajectories and
inter-robot distances shown in (p-t) and (a-e) demonstrate the
effect of phase 2 optimization.

2) Numbers of Connection Periods: Fig. 4a and 4b shows
the impact of period numbers Np ∈ {2, 3, · · · , 8} on ergodic
metric when all robots explore the common information map
ϕ̄ ((a-t) in Fig. 3) or each robot has its information map
ϕi, i ∈ IN ((u-y) in Fig. 3). We observe that ESPC usually
achieves an order of magnitude lower (i.e., better) ergodicity
compared to the baselines for various Np. Meanwhile, the
ergodicity of both the baselines and ESPC is larger (i.e.,
worse) than only optimizing the ergodicity while ignoring
the connectivity maintenance, as shown by E⋆. It indicates
that maintaining connectivity and minimizing ergodicity are
often two conflicting objectives. Finally, as Np increases, the
length of each period T/Np decreases, which means robots
need to connect more frequently, and ergodicity worsens.

3) Numbers of Robot: Fig. 4c shows the ergodic metric
with different N under a fixed Np = 4. All robots explore
the common information map as shown in Row 1-4 (a-
t) of Fig. 3. First, E⋆ (i.e., ergodic search without con-
nectivity maintenance) decreases as N increases. However,
this method fails to maintain connectivity. Meanwhile, the
ergodicity obtained by the baselines EB1, EB2 and ESPC Ec
fluctuate within a certain range. Additionally, Ec is often an
order of magnitude smaller than EB1 and EB2 when all robots
are fully connected during all periods. The result shows
ESPC obtains better ergodicity than the baselines while
achieving similar connectivity with varying robot numbers.

4) Various Information Maps: Here, we fixed the param-
eters Np = 4, N = 4 and let all robots explore the common
information map. Tab. I shows the four different types of

information maps used in this test, and the ergodic met-
rics E⋆, EB1, EB2, Ec obtained by different methods. ESPC,
Baseline 1, and Baseline 2 maintain connectivity during
all periods (Ccon = 0), whereas ergodic search without
connectivity maintenance fails, resulting in high Ccon values
of 14, 22, 22, 24 for maps 1−4, respectively. ESPC achieves
lower ergodicity than the baselines. Besides, the informa-
tion maps with geographically concentrated distributions
(map1,map3) exhibit lower ergodicity than dispersed ones
(map2,map4) since the robots can meet more easily in these
areas with high information density. Note that the ergodicity
varies depending on the type of information map. In map1,
E⋆ is even slightly higher than Ec, and the possible reason
is that the phase 1 optimization can get trapped in a local
minimum, which is common for ergodic search.

5) Baseline 3: This section compares ESPC against Base-
line 3. The test settings are the same as in map2 of Tab. I.
With the maximum iteration K = 50, Baseline 3 failed to
converge to a dynamically feasible trajectory after running
279.94 seconds, and the average equality error is 0.31, while
ESPC achieves convergence after 133.14 seconds with an
average equality error of 0.01. This result justifies the benefit
of solving Problem 2 in two phases as in ESPC.

D. Simulation and Hardware Experiments

We first validate the effectiveness of our proposed
ESPC planning method by simulating 8 quadrotors using
Crazysim [32] (see attachment). The hardware experiment
is conducted with N = 4, Np = 4 using Crazyflie 2.1 [33],
Crazyswarm2 [31], ROS2 [34] and a motion capture system.

TABLE I
ERGODIC METRICS WITH VARIOUS INFORMATION MAPS

Name map1 map2 map3 map4

ϕ̄

E⋆ 7.03× 10−5 1.47× 10−4 6.95× 10−5 1.07× 10−4

EB1 6.98× 10−3 6.25× 10−2 1.50× 10−2 4.98× 10−2

EB2 8.12× 10−5 3.01× 10−2 1.48× 10−3 2.27× 10−2

Ec 7.00× 10−5 6.25× 10−3 6.95× 10−5 2.49× 10−3



Limited by the test space, we scale down the workspace
and use the following parameters: W = [−1, 1]× [−1, 1]×
[0, 3] m3, Rc = 0.5 m, ρ = 6.0, εd = 0.3 m, T = 20 s,
δt = 0.2 s. All Crazyflies use PID-based position control
to resist unmodeled dynamics and motion disturbances.
The comparison of the reference trajectories and the actual
trajectories is shown in Fig. 5, which validates that our
experimental settings match the hardware, and the planned
trajectories are executable on real robots in the lab. Besides,
ESPC can maintain periodic connectivity during ergodic
search for multiple quadrotors in a lab setting.

VI. CONCLUSION AND FUTURE WORK

This paper studies multi-robot ergodic search with in-
termittent connectivity maintenance and proposes a new
method, ESPC. ESPC introduces the notion of relaxed
periodic connectivity and the corresponding problem for-
mulation. To solve the problem, ESPC uses a two-phase
method based on the augmented Lagrangian method. We
compared ESPC against baselines in simulation and verified
the results on quadrotors. The results show that ESPC can
maintain connectivity while achieving low ergodic metrics.
Future work includes a comparison with our other recent
work [35], and distributed planning to handle numerous
robots, as opposed to the centralized planning in this work.
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