
Mixed Integer Conic Programming
for Multi-Agent Motion Planning in Continuous Space

Shizhe Zhao1, Yongce Liu1, Howie Choset2 and Zhongqiang Ren1†

Abstract— Multi-Agent Motion Planning (MAMP) seeks
collision-free trajectories for multiple agents from their re-
spective start to goal locations among static obstacles, while
minimizing a cost function over the trajectories. Existing
approaches for this problem include graph-based, Mix-Integer
Programming (MIP) based and trajectory optimization-based,
each with its own limitations. This paper introduces a new
approach for MAMP based on Mixed Integer Conic Pro-
gramming (MICP) formulation that complements these existing
approaches. We show that our formulation is valid and test
our approach against various baselines, including a graph-
based method that combines search and sampling, as well as
different MIP formulations. The numerical results show that
the solutions found by our approach are sometimes eight times
closer to the true optimum than the ones found by the baseline
when given the same amount of runtime limit. We also verify
our approach with multiple drones in a lab setting.

I. INTRODUCTION

This paper investigates a Multi-Agent Motion Planning
(MAMP) problem, which seeks collision-free trajectories for
multiple agents from their respective start to goal locations
among static obstacles, while minimizing the sum of trajec-
tory lengths of the agents subject to a time bound, within
which all agents must arrive at their goals. The agents have
speed limits and can move in any direction. This problem
is fundamental in robotics and arises in applications such
as logistics and surveillance. Consider autonomous guided
vehicles or forklifts transporting materials in factories, or
drones flying in a city to delivery packages in a coordinated
fashion among buildings. MAMP naturally arises in these
scenarios to optimize the operation of the robots. MAMP is
challenging when producing high quality trajectories among
obstacles while avoiding agent-agent collision [1], [2].

A. Related Work

To address MAMP, Mixed Integer Programming (MIP)
was used to solve MAMP. MILP [3] uses a set of linear
constraints to describe the obstacles, and then finds a solution
by calling an off-the-shelf solver. However, MAMP often
involves nonlinear constraints (e.g., speed limit) and objec-
tives (e.g., Euclidean distance), which cannot be directly
represented by MILP. Directly encoding nonlinearity yields
a mixed integer nonlinear programming (MINLP) model,
which is often much slower. Alternatively, these nonlinearity

1 Shizhe Zhao, Yongce Liu and Zhongqiang Ren are at Shang-
hai Jiao Tong University, China. Emails: {shizhe.zhao, yongce.liu,
zhongqiang.ren}@sjtu.edu.cn

2 Howie Choset is at Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213, USA. Emails: {choset@andrew.cmu.edu}

† Corresponding author.

(a) (b) (c)

(d)

Fig. 1: (a) shows an example of MAMP in continuous space
with drones, where the trajectories are obtained from our
MICP. (b) shows the trajectories obtained from the existing
MILP model [3]. (c) illustrates a possible discretization of
the workspace, which can be represented as an undirected
graph G. The gray dots and solid lines represent the vertices
and edges of G, respectively. (d) shows the setup of drones
in a motion capture system to execute the planned paths.
The color of the rectangular frame on the drone indicates
the corresponding agents in (a), (b) and (c). Our MICP often
finds shorter paths.

can be addressed by approximation [4], [5], which may result
in highly suboptimal solutions (Fig. 1b).

Besides, graph-based methods [6]–[12] usually discretize
the workspace into a graph (such as a state lattice or
roadmap) and the action space of the agent into a set of
motion primitives (i.e., short trajectories connecting two
states) to iteratively plan trajectories for the agents from
their starts towards their goals. These methods often find
high-quality solutions within the graph. However, generating
a graph representation to properly capture the obstacle-free
space and the potential agent-agent interaction is challenging,
since too coarse a discretization may lead to no solution
(Fig. 2a) while too fine a discretization may lead to high
computational burden (Fig. 2b).

Sampling-based methods [13]–[15] address the aforemen-
tioned challenge by iteratively sampling from the state space

or the action space of the agents to find collision-free
trajectories. Sampling-based methods run fast to find a first
feasible solution and are able to asymptotically converge
to an optimal solution when the runtime goes to infinity.
However, the solution quality returned by these approaches
within a finite runtime can be poor without fine tuning the
sampling process (Fig. 2c), especially when the environment
is cluttered with bottlenecks. Recent effort seeks to provide
solution quality guarantees with a finite number of samples,
but are often limited to a small number of agents in practice
due to the heavy computational burden [13].

Another method that avoids discretization is using a graph
of convex sets (GCS) to represent the workspace and plan-
ning motions by optimization. These approaches are fast,
produce high quality solution, and can operate in large and
cluttered environments [16]–[19]. However, GCS for multi-
agent is under-explored, and how to handle time-dependent
constraints for agent-agent collision avoidance in MAMP
remains a challenge. Recent work makes attempts to adapt
GCS to a space-time domain to solve MAMP, but they either
result in unbounded suboptimal solutions [20], or has limited
scalability [21].

Finally, trajectory optimization solves similar multi-agent
planning problems by planning the motion of multiple agents
with dynamics [22]–[26]. However, trajectory optimization
often relies heavily on initialization, and can get trapped by
local minimum or even fail to find a feasible solution in
cluttered environments. Local collision avoidance strategies
iteratively plan and replan the motion locally around the
robots, so that the robots avoid collision with each other
in a reactive and decentralized fashion [27]–[29]. These
approaches can readily scale to a large number of robots,
but provide no solution quality guarantee due to their my-
opic local coordination strategy. Some other work seeks to
combine different techniques together, such as search and
sampling [30], [31], search and optimization [32] to bring
together the benefits of different classes of methods.

B. Contributions

This paper introduces a Mixed Integer Conic Programming
(MICP) approach for MAMP under discretized time steps.
This method does not require discretization of the workspace
and can provide near-optimal solutions within a finite run-
time limit. Compare to aforementioned methods, our method
focuses on providing posterior bounds by handling speed
limit constraints and minimizing Euclidean distance travelled
by the agents, which were not investigated before.

We compare MICP with a recent sampling-based method,
KCBS [30], as well as different formulations, MILP [3] and
MINLP. The experiments include several non-trivial settings
with up to 10 agents. The results show that our approach
can find solutions in challenging cluttered space where the
KCBS fails. In other settings, the solutions found by our
approach are around 8 times closer to the true optimum than
the ones found by the KCBS when given the same amount
of runtime. Our MICP demonstrates balanced performance
compared to other formulations; it is much more scalable

Fig. 2: An illustration of Multi-Agent Motion Planning. The
two square agents need to move in a collision-free manner
among obstacles. The goal of each agent coincides with the
start position of the other agent. (a) Search methods with too
coarse a discretization can lead to no feasible solution. (b)
An optimal solution in the discretized representation can be
highly sub-optimal in the continuous space. (c) Sampling-
based method may return sub-optimal solutions. (d) Our
MICP based method seeks to directly plan in the continuous
space to find high quality solutions.

than MINLP and offers better solution quality than MILP.
We also showcase the use of our approach on multiple
drones under a motion capture system in non-trivial cluttered
environments (Fig. 1d).

II. PROBLEM STATEMENT

Let W ⊂ R2 denote a bounded 2D workspace. For any
point w ∈ W , let w(x) and w(y) denote the x and y
coordinate of w. We assume the agents and static obstacles
are convex polygons. A polygon P is defined by its vertices
V (P) = [wP

0 , w
P
1 , · · · , wP

k],
1 where wP

i is called the ith
(corner) vertex of P and (wP

i , w
P
i+1) is the ith edge. All

vertices in V (P) are in counter-clockwise order. Let ∂P
denote the boundary of the polygon P . Without causing
confusion, from now on, we always use P to represent the
interior of the polygon, i.e., an open set that excludes its
boundary. The reference point of a polygon P is its centroid,
denoted as r(P):

r(P) =

∑
w∈V (P)

w

|V (P)|
(1)

Let O = {o1, o2, . . . , os} denote the set of static obstacles.
Let the index set I = {1, 2, . . . , n} denote a set of n agents.
At any time t, let rit denote the reference point of agent i at
t, and let At = {A1(r1t), . . . , A

n(rnt)} denote the set agent
polygons at t, where Ai(rit) denotes the polygon of the ith
agent when the reference point is at rit ∈ W . Additionally,
Ai(rit) is simply referred to as Ai

t when there is no confusion.
Agents can move in any direction. Let si, gi ∈ W denote

the start and goal position of the agent i. All the agents share

1We use bracket to indicate that V (P) is an ordered list of vertices.

the same speed limit, denoted as Vmax ∈ R+, and share the
same global clock. Each agent starts its motion at the time
t = 0 from si and ends its motion at gi at a time that is
no later than Tmax ∈ R+, where Tmax is called the Time
Constraint.

Let τ i : [0, Tmax] → W denote the trajectory of agent
i ∈ I , where τ(0) = si and τ(Tmax) = gi. The cost of a
trajectory c(τ i) = |τ i| is defined as its length.

Problem 1 (TB-MAMP): The goal of the Time Bounded
Multi-Agent Motion Planning (TB-MAMP) problem is to
find a trajectory τ i for each agent i ∈ I such that for any
t ∈ [0, Tmax], (i) each trajectory τ i is collision free with
respect to the static obstacles

∀o ∈ O, Ai(τ i(t)) ∩ o = ∅ (2)

(ii) there is no agent-agent collision along the trajectories for
each pair of agents

∀i ∈ I, ∀j ∈ I\{i}, Ai(τ i(t)) ∩Aj(τ j(t)) = ∅ (3)

and (iii) the sum of individual trajectory cost
∑
i∈I

c(τ i)

reaches the minimum.

Remark 1: Arrival time and trajectory length are two
common optimization objectives in the MAMP literature,
used by different methods. Search-based methods usually
minimize the sum of arrival times at the goals [6]–[8],
while sampling-based methods usually minimize the sum of
trajectory lengths [13], [14]. Some recent papers also seek
to combine both objectives as a multi-objective planning
problem [33]. This work seeks to minimize the trajectory
lengths subject to a time constraint.

III. MIXED INTEGER CONIC PROGRAM (MICP)

Our formulation discretizes the time dimension into a finite
number of time steps. Let δt ∈ R+ denote the time unit, and
let T = {0, 1, 2, . . . ,m} denote the index set of a sequence
of time steps, where m = Tmax/δt. We first describe how
to represent obstacles to ensure collision avoidance at any
time step and during the transition between time steps. Then
we introduce the speed limit constraint of the agents and the
objective function to be minimized. Finally, we summarize
the entire MICP formulation.

A. C-Space Obstacles

Definition 1: Given an agent i ∈ I and polygon P that
may potentially collide with i. Let Ci(P) denote the C-space
(configuration space) obstacle of P to the agent i, i.e., ∀p ∈
Ci(P), Ai(p) ∩ P ̸= ∅.
In this paper, P is a polygon corresponding to either a static
obstacle or another agent as explained later. When we say
agent i does not enter Ci(P), we mean agent i’s reference
point rit does not enter Ci(P). To compute Ci(P), let P1⊕P2

denote the Minkowski sum of polygons P1 and P2, i.e.,P1⊕
P2 = {w1 + w2 | w1 ∈ P1, w2 ∈ P2}. Let P ′ denote a
polygon that moves P to the origin (0, 0) (i.e., the reference
point of P is moved to the origin), and then reflects about
the origin, i.e., P ′ = {−w + r(P) | w ∈ P}. For example,

(a) (b)

Fig. 3: (a) illustrates the region of P ⊕ Ai′
t (blue) and P ⊕

Ai′
t ⊕Qi (white) of an obstacle P (grey) in the configuration

space of an agent i. Here, ri′t , ri′t+1 and rit, rit+1 indicate
the reference points of agent i with and without the buffer
region respectively. It shows that, without buffer region Qi,
the agent may enter P⊕Ai′

t during the transition, resulting in
a inter-sample collision. (b) The larger rectangle represents
the C-space obstacle Ci(P), and the smaller gray rectangle
represents the region P ⊕ Ai′

t . Given any w ∈ P ⊕ Ai′
t , the

red square is the point set {w}⊕Qi, and it contains a circle
C centered at w with diameter qi. Any segment p1p2 that
ending at the border and passes w must be no less than qi,
which exceed speed limit.

Ai′
t means the polygon of agent i is first moved to the origin

and then reflected about the origin.
To avoid collision at each discretized time step, let P⊕Ai′

t

represent the C-space obstacle, which is a region generated
by inflating obstacle polygon P with respect to the agent
polygon Ai

t. It ensures collision avoidance between the agent
i and the obstacle P at any discretized time step t ∈ T by
restricting that agent i does not enter P ⊕Ai′

t [34].
To avoid collision during the transition between two sub-

sequent time steps t and t + 1, an additional buffer region
is needed when inflating the obstacles. Let viP denote the
maximum relative speed of agent i to P :

viP :=

{
Vmax, if P ∈ O (P is a static obstacle)
2Vmax, otherwise (P is another agent) .

(4)

Let Qi = qi×qi denote a square with side length qi, centered
at the origin (0, 0), using the origin as its reference point,
where qi = viP δt. It ensures that the agent i does not collide
with P during the transition between t and t+1, as long as
at t, the agent i does not enter:

Ci(P) = P ⊕Ai′
t ⊕Qi, (5)

which is the corresponding C-space obstacle after consid-
ering the buffer region Qi. Fig. 3a provides an illustration.
Fig. 3b illustrates that qi = viP δt is sufficient enough to
ensure collision-free motion, theoretically proof is skipped
due to the space limit.

B. Formulation

The trajectory of each agent can be represented by a path
πi = [ri0, r

i
1, · · · , rim] ⊂ W , and the cost of a path is defined

as the length of the path: c(πi) =
∑

t∈T\{m}
∥rit, rit+1∥.

1) Start and Goal Constraints: The first and last point of
each path must coincide with the start and goal of the agent:

ri0 = si, i ∈ I

rim = gi, i ∈ I
(6)

2) Speed Constraint: Let auxiliary variables l(xi
t), l(y

i
t) ∈

R, which are real numbers, either positive or negative,
denote the amount of translation along the x-axis and y-axis
respectively from time step t to t + 1. Let lit ∈ R+ denote
the traversed distance in the workspace. For all i ∈ I, t ∈
T\{m}:

l(xi
t) = rit+1(x)− rit(x)

l(yit) = rit+1(y)− rit(y)

l(xi
t)

2
+ l(yit)

2 ≤ lit
2

lit ≤ Vmaxδt

(7)

Constraint l(xi
t)

2
+ l(yit)

2 ≤ lit
2 is a quadratic cone defined

over lit, l(x
i
t), l(y

i
t).

3) Agent-Obstacle Collision Avoidance: Given an agent i,
an obstacle o ∈ O and a time step t. Recall that Ci(o) is the
C-space obstacle of o to agent i. To simplify the notation,
let P = Ci(o) for this sub-section. Let aPk denote the normal
vector of the kth edge of polygon P pointing outward of the

P , and let B =

[
0 1
−1 0

]
denote a matrix helping represent

the normal vector of an edge. Then, for each vertex of P
(∀wP

k ∈ V (P)):

aPk = B(wP
k+1 − wP

k) (8)

Here, the index of a polygon’s vertices and edges follows
modular arithmetic, i.e., wP

i+1 = wP
(i+1) mod |V (P)|, so that

Eq. (8) is well defined for the last vertex k = |V (P)| − 1.
Then, any point r ∈ W not in P must be contained in at least
one of the half plane related to an edge of P Fig. 4 provides
an illustration when P is a rectangle. In other words, point
r must satisfy at least one of the following constraints:

(aP0)
T · (r − wP

0) ≥ 0, or

(aP1)
T · (r − wP

1) ≥ 0, or
...

(aP|V (P)|−1)
T · (r − wP

|V (P)|−1) ≥ 0

(9)

Here, each constraint in Eq. (9) encodes a half plane corre-
sponding to an edge of P . The “or” relationship in Eq. (9)
can be expressed by big-M constraints. Let hi,o

k,t ∈ {0, 1}
denote auxiliary variables, indicating whether a constraint
is active or inactive. We now replace r in Eq.9 with rit
the position of agent i at a time step t. Then, for all
i ∈ I, o ∈ O, t ∈ T :

∀wP
k ∈ V (P) : (aPk)

T · (rit − wP
k) ≥ −M(1− hi,o

k,t),∑
k

hi,o
k,t = 1, (10)

Fig. 4: Rectangle P = Ci(o) is a C-space obstacle of o ∈ O
to the agent i. For each k ∈ {0, 1, 2, 3}, Lk is a line that
defines a subspace, and hi,o

k,t is a boolean value that indicates
whether rit is in the subspace of Lk. For example, hi,o

3,t = 1
means the agent is to the right of P , i.e., rit is on the right
side of L3.

where M ∈ R+ is a sufficiently large constant number. The
constraint

∑
k

hi,o
k,t = 1 ensures only one of the constraints in

Eq. (9) is active.
4) Agent-Agent Collision Avoidance: Agent-Agent colli-

sion avoidance constraints can be expressed in a similar way,
the difference is that, the reference point of the obstacle (i.e.,
the other agent) is a decision variable, which can be different
at each time step. Given agent i and j (i ̸= j), and a time
step t, let P i,j

t denote the C-space obstacle of Aj
t to agent

i at t, when agent j is considered the obstacle. P i,j
t is a

polygon of fixed shape that translates in the workspace:

P i,j
t = Ci(Aj

t) = Ci(Aj
0)⊕ {−sj} ⊕ {rjt} (11)

Let ai,jk denote the normal vector of the kth edge of P i,j
t

pointing outward of polygon P i,j
t . Then, for each vertex wi,j

k,t

of polygon P i,j
t , k = 1, 2, · · · , |V (P i,j

t)|:

ai,jk = B(wi,j
k+1,t − wi,j

k,t)

= B((wi,j
k+1,0 − sj + rjt)− (wi,j

k,0 − sj + rjt))

= B(wi,j
k+1,0 − wi,j

k,0)

(12)

This equation shows that the normal vector of each edge of
polygon P i,j

t remains constant at any time steps, which is
not a surprise since all agents can only translate at any time,
and translation does not change the direction of the normal
vectors of each agent polygon.

Similar to the Eq. (10), let hi,j
k,t ∈ {0, 1} denote auxiliary

variables for the big-M constraints, then ∀i, j ∈ I, i < j, t ∈
T, ∀wi,j

k,t ∈ V (P i,j
t):

(ai,jk)T · (rit − (wi,j
k,0 − sj + rjt)) ≥ −M(1− hi,j

k,t),∑
k

hi,j
k,t = 1, (13)

Since ai,jk is a constant that is independent from any decision
variable, Eq. (10) is a linear combination of rit and rjt .

(a) Empty (b) Random (c) Narrow (d) Parallel (e) Wall (f) Corridor

Fig. 5: Test environments used in our experiments. Black rectangles are obstacles, squares are agents, solid stars are their
goals, and hollow circles indicate their positions at each time step.

Notation Domain Meaning
rit W Reference point of i at time step t
lit R+ Travelled distance of i from time step t to t+ 1

hi,o
k,t, h

i,j
k,t {0, 1} Auxiliary variables for big-M constraints

TABLE I: Decision variables in the MICP formulation. The
subscripts and superscripts take value: ∀i ∈ I, t ∈ T, o ∈ O.

5) MICP Formulation: We summarize all the decision
variables D in Table I, and the full MICP formulation is:

min
D

∑
i∈I,k∈T

lik

subject to (6), (7), (10) and (13)

Eq. (6) are linear constraints. Eq. (7) are linear constraints
and second order conic constraints for any i ∈ I, k ∈
T . Eq. (10) and (13) are linear combinations of decision
variables. As a result, the entire formulation is a Mixed
Integer Conic Program (MICP).

Remark 2: The lower bound from the aforementioned
MICP may not be the lower bound of our TB-MAMP prob-
lem, due to the buffer region Qi in Eq (5). To certify the
solution quality, we can relax the MICP formulation by
setting Qi = ∅, which ignores collision avoidance during the
transition. This allows us to obtain a posterior lower bound
from the lower bound of the relaxed formulation.

IV. EXPERIMENTAL RESULTS

This section begins with a description of the experimental
settings and then reports the results of three experiments. In
the first experiment, we provide an overview of all baseline
methods, highlighting the advantage of MICP on solution
quality. The second experiment demonstrates the effective-
ness of MICP in various environment types and inspects the
solution process. The third experiment demonstrates the use
of our approach on multiple drones under a motion capture
system. Our code is publicly available2.

A. Test Settings

1) Test Instance Generation: We create 6 workspaces
(also called environments) of size 10×10. Figure 5 shows an
example of four agents in each workspace. In the Empty and
Narrow, the agents need to swap their locations, i.e., each
agent’s goal is the starting location of another agent. These

2https://github.com/rap-lab-org/public_MICP_MAMP

two environments describe the scenarios where all single-
agent shortest paths cross at the same position within an
open and narrow area, respectively. The shortest path of each
agent is simply the straight line between its start and goal
location. We intend to use these environments to evaluate our
method’s performance for coordination in cluttered spaces.
In the Random environment, static obstacles and agents’
start and goal locations are randomly sampled from the
workspace.

In the Parallel, Wall and Corridor environments, the
agents are divided into two groups, where each group starts at
one side of the workspace and moves towards the opposite
side. We intent to use these environments to evaluate our
method under various workspace topologies. Specifically, in
Parallel, the obstacles in the middle form three corridors. The
Wall involves an additional blockage at the central corridor,
forcing agents to avoid the obstacle, and the agents thus have
to have more interaction. The Corridor involves additional
blockages in both the top and bottom areas, forcing all
agents to navigate through the middle corridor, which further
increases the chance of interaction among the agents.

2) Implementation and Baseline: We implement our
MICP formulation in Python and use Gurobi 11 as the solver.
In our tests, we let Gurobi terminate if the optimality gap
(i.e., the gap between the lower bound and the upper bound
computed by the solver) is within 5%. All experiments were
run on a desktop with a 16-core i7-13700 CPU and 32GB
RAM on Ubuntu 22.04. Baseline methods are as follows:

a) KCBS [30]: It follows the workflow of Conflict-
Based Search (CBS) [35]. KCBS employs a sampling-based
method (e.g. RRT [36]) at the low-level to find path for each
agent in the continuous space. The original KCBS incor-
porates kinodynamic constraints into the low-level planner,
which is not required in this work. In addition, KCBS does
not consider the Tmax constraint (Sec. II) while our MICP
does. Finally, the original KCBS prioritizes the search by
the number of collisions rather than the traversed distance
and terminates after the first solution is found. We adapted
KCBS to align with our problem setting by allowing it to
keep running CBS-like search for further improvement after
finding the first solution. This will persist until either the
time limit is reached or all CBS search nodes are explored.

b) MIP and MINLP [3]: We replace the expression of
objective function for MIP and MINLP with the sum of L1-

https://github.com/rap-lab-org/public_MICP_MAMP

norm and L2-norm respectively

L1 =
∑

|rit, rit+1| (14a)

L2 =
∑

∥rit, rit+1∥2, (14b)

and the replace the speed limit constraints (i.e., Eq. (7)) with

MILP : |rit, rit+1| ≤
√
2δtVmax (15a)

MINLP : ∥rit, rit+1∥2 ≤ (δtVmax)
2, (15b)

where Eq. (15a) approximates a circular region with a radius
of δtVmax using a inner square.

We refer to a (problem) instance as a specific number of
agents in a specific environment. We allocate a 500 seconds
runtime limit (i.e., TLimit=500)3 for each instance, and fix
the parameters δt = 0.2, Vmax = 2, Tmax = 10. Each agent
is a 1× 1 square.

3) Metrics for Comparison: For each instance, we exam-
ine two metrics: the shortest distance D∗ and the optimality
gap ∆. Here, D∗ is the total traversed distance of all the
agents in the best solution obtained within the runtime limit.
It represents an upper bound of an instance. An instance is
considered failed if a method cannot find a feasible solution
within the runtime limit, and the corresponding D∗ is infinite,
denoted as inf. The gap ∆ is evaluated by D∗−Dlb

D∗ , where
Dlb can be computed as described in Remark 2. Note that
the gap ∆ is not equivalent to the optimality gap of MICP, as
the obstacle inflation influences the evaluation on both lower
and upper bound in MICP. Both D∗ and ∆ are better when
they are smaller.

B. Experiment 1: Overview of All Methods

This experiment aims to provide an overview of the
behaviour of all methods. To do this, we run both methods in
Empty and Random environments, and for each environment,
we vary the number of agents n ∈ {4, 6, 8, 10}. For each
given n, we test 10 randomly generated instances.

Table II shows the average solution quality (D∗) of 10
instances for each setting, along with the corresponding
number of failures. We can see that, KCBS has significantly
worse D∗ than other methods, which is expected for a
sampling-based method. MILP also has noticeable worse D∗,
compared to MICP and MINLP. This is because the L1-
norm objective (i.e., Eq (14a)) does not perfectly align with
the Euclidean distance, Fig. 1b shows an example. MINLP
and MICP have similar D∗, which are better than other
baselines. However, MINLP can only solve up to 8 agents
in the Random environment and up to 6 agents in the Empty
environment.

Fig. 6 shows the runtime distribution of 10 instances in
each setting. It shows that both MICP and MINLP can
terminate early within the runtime limit when n is small, as
the optimality gap calculated by the Gurobi solver is within
5% which satisfies the termination condition we set for the

3We use “time budget Tmax” to denote the time constraint in the TB-
MAMP problem formulation as described in Sec. II, and use “runtime limit
TLimit” to denote the runtime limit for each instance.

n\avg.D∗ KCBS MICP MILP MINLP
Empty 4 55.3 42.4 53.5 42.1

6 94.5 64.0 80.8 63.2 (#F 2)
8 134.0 85.4 108.3 inf (#F 10)
10 171.4 (#F 1) 115.4 138.3 inf (#F 10)

Random 4 26.7 19.0 23.9 19.8 (#F 1)
6 42.73 28.0 34.8 28.8
8 77.35 42.1 52.6 42.7 (#F 2)
10 100.0 51.5 62.1 inf (#F 10)

TABLE II: Average total distance of all agents’ trajectories
(avg. D∗). The #F in bracket shows the number of failures
of each method, with all others being successful by default.

Fig. 6: Runtime distribution of all instances in Random and
Swap environments.

solver. When n increases, the runtime distribution of MICP
and MINLP fall into narrow range towards the runtime limit.
MILP exhibits a similar trend but generally has a smaller
runtime than all others. This is because a linear model for
MAMP is easier to solve. Moreover, MILP uses L1-norm as
the objective, so it cannot properly evaluate the optimality
bound in Euclidean distance, leading to a early termination
even if it has enough time to further improve the solution. In
contrast, since KCBS lacks knowledge of optimality bound
knowledge during the search, it continuously improves the
solution quality throughout the entire runtime limit unless it
has exhausted all the search nodes.

C. Experiment 2: Solution Process of MICP and KCBS

This experiment closely examines the solution process of
MICP and KCBS. To achieve this, we run MICP and KCBS
on a single instance in all environments shown in Fig. 5.

As shown in Table III, our MICP method consistently
returns solutions of better quality (i.e., smaller D∗) than
KCBS within the same amount of runtime limit. The data
on the gap ∆ also verifies the solution quality. For example,
in the Empty environment with 10 agents, our MICP method
returns a solution that is at most 5.48% away from the true
optimum while the solution returned by KCBS is at most
43.25% away from the true optimum, which is about 8 times
larger than 5.48%.

To better understand the method, we examine the solution
process of both methods for some representative instances.
For each instance, we record the best solution over time.

Fig. 7: Each figure shows the solution process on the instance with the largest n that is solved by both methods in each of
the six environments.

D∗ ∆(%)
n MICP KCBS MICP KCBS

Empty 10 108.01 179.89 5.48 43.25
Random 10 58.11 99.11 5.91 50.54
Narrow 2 12.81 14.62 10.69 21.75

4 32.41 inf 19.19 NaN
Parallel 4 44.23 62.43 5.20 32.84

6 61.67 102.84 4.02 42.44
8 83.86 151.99 8.23 49.37
10 102.97 168.83 8.09 43.94

Wall 4 50.72 95.17 11.63 52.91
6 78.11 108.88 21.02 43.34
8 105.73 161.74 27.13 52.36
10 135.78 188.40 30.29 49.76

Corridor 4 45.12 71.18 3.77 39.00
6 66.07 115.56 7.57 47.15
8 94.85 167.23 17.40 53.15

TABLE III: Result of all instances. ∆ is the solution opti-
mality bound.

As shown in Fig. 7, for some instances (Fig. 7(a,b)), the
solution quality (D∗) of our MICP improves over time, while
for the other instances (e.g. Fig. 7(c,d)), the solution quality
has little change as time evolves. In Fig. 7(c), the reason
is that D∗ is already close to the lower bound, making it
hard to further improve. In Fig. 7(d), a possible reason is the
cluttered environment and the complicated interaction among
the agents, which slows down the solution process of MICP
and makes it hard to improve the upper bound.

On the other hand, the lower bounds calculated by MICP
plateau after reaching a certain value in all instances, which
indicates the difficulty of improving the lower bound. A
better lower bound estimation results in smaller optimality
gap during the computation, allowing the early termination
of some instances within the time budget (e.g. Empty with
4 agents in Table III).

From Fig. 7(d), we can observe that in Parallel, Wall
and Corridor, the upper bound of MICP increases with the
growing number of blockages, whereas the lower bound
remains similar. This suggests that in environments with
narrow corridors where the agents have to interact with

each other for collision avoidance, the MICP method may
end up with a large optimality gap due to the difficulty
on improving lower bound. We also notice that, for both
KCBS and MICP, the time to find first solution increases
with the increasing number of blockage as well, and the
difference in the runtime to the first solution between the two
methods becomes smaller. The baseline KCBS returns the
first feasible solution earlier than our MICP method in most
environments, except for Corridor. In both environments,
KCBS rarely shows improvement in the remaining time.

D. Experiment 3: Drone Experiment

This experiment demonstrates the use of the proposed
method in a multi-drone system. We test two instances in this
experiment. For each instance, multiple drones (CrazyFlie
2.0) execute their paths planned by our MICP. Readers can
find more details from our video.

In the first instance, as shown in Fig. 1, four agents are
positioned at the four corners of the workspace, and their
goal location is the opposite corner. Meanwhile, the agent
in the middle needs to avoid the other passing agents. This
instance highlights the advantage of planning in a continuous
space. Given the same Vmax and Tmax, the D∗ in continuous
space (Fig. 1a) is 55.52. In contrast, when discretizing the
workspace into a grid as shown in Fig. 1c, the solution paths
have longer length and D∗ is 83.33, which is larger than
55.52.

In the second instance, as shown in Fig. 5c, four agents
swap their locations in a narrow corridor. This instance
highlights the advantage of MICP in extremely crowded
environment, where KCBS failed (Table III).

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel MICP formulation of
MAMP. We show that MICP is valid and verify our approach
in various test settings. Although the MICP is based on
squared-agents are in the same velocity bound, the formula-
tion can be easily extended to the scenario that agents are in

different shape of convex polygons, and each with its own
velocity constraints.

A limitation of MICP formulation is that it does not
support non-holonomic agents, which restricts its application
scenarios. One possibility to remedy this is to combine MICP
with a search-based method that handles non-holonomic
constraints. Another future direction for future work is to
integrate MICP into a multi-level framework to improve
scalability.

VI. ACKNOWLEDGMENT

The main ideas in this paper originated during Dr. Ren and
Allen’s work at CMU and TAMU respectively. This material
is partially based on the work supported by the National
Science Foundation (NSF) under Grant No. 2120219 and
2120529. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect views of the NSF. Dr. Ren
and Dr. Zhao were also partially supported by the Natural
Science Foundation of Shanghai under Grant 24ZR1435900,
and the Natural Science Foundation of China under Grant
62403313.

REFERENCES

[1] K. Solovey and D. Halperin, “On the hardness of unlabeled multi-robot
motion planning,” The International Journal of Robotics Research,
2016.

[2] J. K. Johnson, “On the relationship between dynamics and complexity
in multi-agent collision avoidance,” Autonomous Robots, 2018.

[3] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in 2001 European
Control Conference (ECC), 2001, pp. 2603–2608.

[4] M. G. Earl and R. D’andrea, “Iterative milp methods for vehicle-
control problems,” IEEE Transactions on Robotics, vol. 21, no. 6, pp.
1158–1167, 2005.

[5] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-
integer programming in motion planning,” Annual Reviews in Control,
vol. 51, pp. 65–87, 2021.

[6] L. Cohen, T. Uras, T. S. Kumar, and S. Koenig, “Optimal and bounded-
suboptimal multi-agent motion planning,” in SOCS, 2019.

[7] A. Andreychuk, K. S. Yakovlev, P. Surynek, D. Atzmon, and R. Stern,
“Multi-agent pathfinding with continuous time,” Artif. Intell., 2022.

[8] Z. Ren, S. Rathinam, and H. Choset, “Loosely synchronized search for
multi-agent path finding with asynchronous actions,” in 2021 IROS.
IEEE, 2021.

[9] S. Zhou, S. Zhao, and Z. Ren, “Loosely synchronized rule-based
planning for multi-agent path finding with asynchronous actions,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 39,
Apr. 2025, pp. 14 763–14 770.

[10] L. Wen, Y. Liu, and H. Li, “Cl-mapf: Multi-agent path finding for car-
like robots with kinematic and spatiotemporal constraints,” Robotics
and Autonomous Systems, 2022.

[11] I. Solis, J. Motes, R. Sandström, and N. M. Amato, “Representation-
optimal multi-robot motion planning using conflict-based search,”
IEEE Robotics Autom. Lett., 2021.

[12] J. Chen, J. Li, C. Fan, and B. C. Williams, “Scalable and safe multi-
agent motion planning with nonlinear dynamics and bounded distur-
bances,” in Thirty-Fifth AAAI Conference on Artificial Intelligence.
AAAI Press, 2021, pp. 11 237–11 245.

[13] D. Dayan, K. Solovey, M. Pavone, and D. Halperin, “Near-optimal
multi-robot motion planning with finite sampling,” IEEE Transactions
on Robotics, 2023.

[14] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“drrt*: Scalable and informed asymptotically-optimal multi-robot mo-
tion planning,” Autonomous Robots, 2020.

[15] T. Pan, A. M. Wells, R. Shome, and L. E. Kavraki, “A general task
and motion planning framework for multiple manipulators,” in IROS,
2021.

[16] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Science robotics,
2023.

[17] T. Marcucci, P. Nobel, R. Tedrake, and S. Boyd, “Fast path plan-
ning through large collections of safe boxes,” IEEE Transactions on
Robotics, 2024.

[18] K. Sundar and S. Rathinam, “A* for graphs of convex sets,” arXiv
preprint arXiv:2407.17413, 2024.

[19] A. G. Philip, Z. Ren, S. Rathinam, and H. Choset, “A mixed-integer
conic program for the moving-target traveling salesman problem based
on a graph of convex sets,” in 2024 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2024, pp. 8847–8853.

[20] J. Tang, Z. Mao, L. Yang, and H. Ma, “Space-time graphs
of convex sets for multi-robot motion planning,” arXiv preprint
arXiv:2503.00583, 2025.

[21] S. Zhao, A. G. Philip, S. Rathinam, H. Choset, and Z. Ren, “Cb-
gcs: Conflict-based search on the graph of convex sets for multi-agent
motion planning,” in IEEE International Conference on Automation
Science and Engineering (CASE), 2025.

[22] M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment
and planning of trajectories for multiple robots,” The International
Journal of Robotics Research, 2014.

[23] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics Autom. Lett., vol. 5, no. 2, pp. 604–
611, 2020.

[24] J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent
and dynamic environments,” IEEE Transactions on Robotics, 2022.

[25] X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang, T. Yang, H. Lu,
Y. Cao, C. Xu, et al., “Swarm of micro flying robots in the wild,”
Science Robotics, 2022.

[26] L. Ferranti, L. Lyons, R. R. Negenborn, T. Keviczky, and J. Alonso-
Mora, “Distributed nonlinear trajectory optimization for multi-robot
motion planning,” IEEE Transactions on Control Systems Technology,
2022.

[27] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The international journal of robotics re-
search, 1998.

[28] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” in 2008 IEEE ICRA,
2008, pp. 1928–1935.

[29] S. Ruan, Q. Ma, K. L. Poblete, Y. Yan, and G. S. Chirikjian, “Path
planning for ellipsoidal robots and general obstacles via closed-form
characterization of minkowski operations,” in Proceedings of the 13th
Workshop on the Algorithmic Foundations of Robotics. Springer,
2020.

[30] J. Kottinger, S. Almagor, and M. Lahijanian, “Conflict-based search for
multi-robot motion planning with kinodynamic constraints,” in IROS.
IEEE.

[31] D. Le and E. Plaku, “Multi-robot motion planning with dynamics via
coordinated sampling-based expansion guided by multi-agent search,”
IEEE Robotics and Automation Letters, 2019.

[32] B. Senbaslar, W. Hönig, and N. Ayanian, “RLSS: real-time, decentral-
ized, cooperative, networkless multi-robot trajectory planning using
linear spatial separations,” Auton. Robots, vol. 47, no. 7, pp. 921–946,
2023.

[33] Z. Ren, C. Zhang, S. Rathinam, and H. Choset, “Search algorithms
for multi-agent teamwise cooperative path finding,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023.

[34] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Overmars,
Computational geometry: algorithms and applications, 3rd Edition.
Springer, 2008.

[35] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence,
2015.

[36] S. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Research Report 9811, 1998.

	Introduction
	Related Work
	Contributions

	Problem Statement
	Mixed Integer Conic Program (MICP)
	C-Space Obstacles
	Formulation
	Start and Goal Constraints
	Speed Constraint
	Agent-Obstacle Collision Avoidance
	Agent-Agent Collision Avoidance
	MICP Formulation

	Experimental Results
	Test Settings
	Test Instance Generation
	Implementation and Baseline
	Metrics for Comparison

	Experiment 1: Overview of All Methods
	Experiment 2: Solution Process of MICP and KCBS
	Experiment 3: Drone Experiment

	Conclusion and Future Work
	ACKNOWLEDGMENT
	References

