
Multi-Agent Combinatorial Path Finding for Tractor-Trailers in
Occupancy Grids

Xuemian Wu1, Zhongqiang Ren1†

Abstract— This paper investigates a problem called Multi-
Agent Combinatorial Path Finding for Tractor-Trailers (MCPF-
TT), which seeks collision-free paths for multiple agents from
their start to goal locations, visiting a set of intermediate
target locations in the middle of the paths, while minimizing
the sum of arrival times. Additionally, each agent behaves
like a tractor, and a trailer is attached to the agent at each
intermediate target location, which increases the “body length”
of that agent by one unit. Planning for those tractor-trailers
in a cluttered environment introduces additional challenges,
since the planner has to plan each agent in a larger state
space that includes the position of the attached trailers to
avoid self-collision. Furthermore, agents are more likely to
collide with each other due to the increasing body lengths, and
the conventional collision resolution techniques turn out to be
computationally inefficient. This paper develops a new planner
called CBSS-TT that includes both novel inter-agent conflict
resolution techniques, and a new single-agent planner TTCA*
that finds optimal single-agent path while avoiding self-collision.
Our test results show that CBSS-TT sometimes requires 60%
fewer number of iterations while finding solutions with cheaper
costs than the baselines.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) seeks collision-free
paths for multiple agents from their respective start locations
to their respective goal locations while minimizing path
costs. This paper considers a generalization of MAPF where
agents need to visit a known set of intermediate target
locations before reaching their goals. This generalization,
called Multi-Agent Combinatorial Path Finding (MCPF),
seeks “start-target-goal” paths for the agents rather than the
“start-goal” paths as in MAPF. MAPF and MCPF arise in
logistics applications. MCPF is challenging as it requires
both collision avoidance among agents (as in MAPF), and
target sequencing, i.e., solving Traveling Salesman Problems
(TSPs) to specify the allocation and visiting orders of targets
for all agents. Both TSP [1] and MAPF [2] are NP-hard to
solve to optimality, and so is MCPF.

Although a few algorithms were developed for MCPF and
other similar variants [4]–[12], most of them ignores or over-
simplifies the task execution process at each target location.
Consider robots collecting empty carts from workstations in
a factory and transport the carts to the designated locations in
a warehouse (Fig. 1), where the number of carts (body length
of an agent) increases at each target location. Consequently,
the planner has to consider the increased body length to

1 Shanghai Jiao Tong University, China (wuxuemian0114@gmail.com,
zhongqiang.ren@sjtu.edu.cn). This work was supported by the Natural
Science Foundation of Shanghai under Grant 24ZR1435900, and the Natural
Science Foundation of China under Grant 62403313.

† Corresponding author

Fig. 1. (a) The motivation of MCPF-TT. A forklift pulling multiple carts
can be described as the tractor-trailer model in this paper. The picture is from
Mitsubishi Logisnext Americas [3]. (b) A toy example of MCPF-TT, which
seeks start-target-goal paths for the agents. Each task has a task duration and
the colors indicate assignment constraints. (c) At time t = 11, the robots
with carts appended are along their paths in a cluttered environment.

avoid self-collision and inter-agent collision as well as target
sequencing in these cluttered environments. With this motiva-
tion, we study a new problem called MCPF for tractor-trailers
(MCPF-TT), where the agent body length increases after
finishing the task at a target. MCPF-TT simplifies the motion
model of robots and the representation of the workspace by
using a four-neighbor occupancy grid, and limits its focus to
the challenge of planning with varying body lengths.

The varying body length of agents in MCPF-TT introduces
challenges to planning. First, to avoid self-collision and find
an optimal individual path for each agent, the planner must
explore a much larger state space that includes the number
of carts attached to the robot and the position of each of
those carts, as opposed to planning merely the position of
the robot itself. This state space has varying dimensions and
grows exponentially with respect to the number of attached
carts, which burdens the computation. Second, the agents
with long bodies are more likely to collide with each other,
especially when executing tasks, which increases coupling
among the agents, and burdens the computation in collision
resolution and target sequencing.

To address these challenges, this paper builds upon our
prior work on CBSS planner for MCPF [6], which consists

of a high-level search that sequences the targets and resolves
agent-agent collision, and a low-level search that plans indi-
vidually optimal paths for each agent subject to constraints
added by the high-level. On the low-level, we develop a new
single-agent planner called Tractor-Trailer Combinatorial A*
(TTCA*) that is guaranteed to find an optimal path for
each agent with varying number of carts. On the high-level,
we introduce new branching rules to resolve agent-agent
collision more efficiently by considering the body length.
We show that the entire approach is guaranteed to find an
optimal solution for MCPF-TT.

We evaluate our approach in several different maps from
a MAPF benchmark set. Our results show that with the help
of TTCA* and the new branching rules, CBSS-TT can find
conflict-free paths using up to 60% fewer iterations while
finding better solutions, especially in small and cluttered
environments.

A. Other Related Work

Several variants of MAPF were studied where an agent
may occupy more than one vertices, similar to the no-
tion of body length in MCPF-TT. Among them, k-Robust
MAPF [13] considers potential delay in agents’ motion by
letting an agent occupy a location for k subsequent time
steps after that agent traverses that location. Multi-Train
Path Finding (MTPF) [14], [15] seeks collision-free paths
for the agents that have a fixed body length longer than
one. These variants of MAPF seeks start-goal paths without
intermediate targets and thus differ from MCPF-TT. For
conflict resolution, our new method differs from the ones
in MTPF [14], which is elaborated later, and we compare
them in our experiments.

II. PROBLEM FORMULATION

A. Workspace and Agents

Let index set I = {1, 2, . . . , N} denote a set of N
agents. All agents share a workspace that is represented
as an undirected graph GW = (V W , EW , cW), where W
stands for workspace. Each vertex v ∈ V W represents a
possible location of an agent. Each edge e = (u, v) ∈ EW ⊆
V W ×V W represents an action that moves an agent from u
to v. Time is discretized into unit-size time steps. The cost
of an edge e is denoted as cW (e), which is one, indicating
that it takes an agent one time unit to traverse that edge.

Let a superscript i ∈ I over a variable denote the specific
agent to which the variable belongs (e.g. vi ∈ V W means
a vertex corresponding to agent i). Let vio ∈ V W denote
the initial vertex (also called the origin) of agent i and Vo

denote the set of all initial vertices of the agents. Let vid ∈
V W denote the goal vertex (also called the destination) of
agent i. There are N goal vertices in GW denoted by the set
Vd ⊂ V W . In addition, let Vt ⊂ V W \ {Vo ∪ Vd} denote the
set of target vertices. Each target vertex is associated with
a task that must be executed by an agent. For each vertex
v ∈ Vt∪Vd, let fA(v) ⊆ I denote the subset of agents that are
capable to execute the task at v. For v ∈ Vt∪Vd and an agent
i /∈ fA(v), agent i can still occupy v at any time but cannot

Fig. 2. Example for executing a task and unloading carts. As shown in
Fig. 1 (c), the blue agent will execute a task from t = 13, and the orange
agent will unload carts from t = 12.

execute the task there. These sets fA(v), v ∈ Vt ∪ Vd are
used to formulate the (agent-target) assignment constraints.

B. Body Length and Occupation List
Let bi ∈ N denote the body length of agent i, which is

always equal to the number of carts that agent i is appended.
The total length of agent i is bi+1, which includes the agent
itself. Let Oi(t) ⊂ V W denote the occupation list, which is a
list of bi+1 adjacent vertices that agent i occupies at time t
(i.e., |Oi(t)| = bi + 1). Let Oi(t, k), k = 0, 1, · · · , bi denote
the k-th vertex occupied by the agent, and the first vertex
Oi(t, k = 0) is occupied by the agent itself and is called the
head vertex of agent i.

Let Vadj(v) ⊂ V W denote the subset of vertices that
are adjacent to v in GW . For an occupation list Oi(t) =
[vi0, v

i
1, · · · , vibi], if the agent moves to an adjacent vertex

u ∈ Vadj(O
i(t, 0)) at time t + 1, then each cart follows

the motion of the former cart, i.e., at time t + 1 the k-th
cart O(t + 1, k) occupies the location O(t, k − 1) of the
(k−1)-th cart at time t, and the new occupation list becomes
Oi(t+1) = [u, vi0, v

i
1, · · · , vibi−1] at time t+1. If the agent

waits in place, then Oi(t+1) = Oi(t). When the agent has at
least one cart, i.e., bi ≥ 1, the agent cannot move backwards,
since backward motion can incur self-collision.

It usually takes some time for an agent to engage a new
cart (e.g. with the help of a human operator) at a target vertex,
which is also called executing a task. Let τ i(v) ∈ N denote
the amount of time that agent i ∈ fA(v) takes to execute the
task at v ∈ Vt. To start executing the task at vik ∈ Vt, the
agent must be in a vertex such that the head vertex Oi(t, 0)
is adjacent to vik (i.e., Oi(t, 0) ∈ Vadj(v

i
k)), and vik is not

occupied by any other agent. If agent i claims that it starts
to execute the task at vik ∈ Vt, agent i will then occupy
bi + 2 vertices within the time range [t + 1, t + τ i(v)] and
thereafter, where the occupation list changes from Oi(t) =
[vi0, v

i
1, ..., v

i
bi] to Oi(t′) = [vik, v

i
0, v

i
1, ..., v

i
bi]. There is an

example in Fig. 2. Each target has only one task and we use
terms task and target interchangeably hereafter.

When agent i has completed all tasks and arrived at its
goal Oi(t, 0) = vid, agent i starts to unload the carts, which
decreases the body length of the agent by one unit per time
step, and the agent eventually occupies only its goal vertex
vid thereafter. There is an example in Fig. 2.

C. Path and Conflicts
All agents share a global clock and start moving

along their paths from time t = 0. Let πi(vi0, v
i
ℓ) =

(vi0, v
i
1, v

i
2, . . . , v

i
ℓ) denote a path for agent i between vertices

vi0 and viℓ, where each vertex vik ∈ πi(vi0, v
i
ℓ) represents the

head vertex of the agent at time t = k. If a path πi(vio, v
i
d)

connects the initial vertex and the goal vertex of agent i,
we denote this path as πi to simply the notation. Let g(πi)
denote the cost of the path, which is the arrival time at vid.

Any two agents i, j ∈ I are in conflict if one of the
following two cases happens. The first case is an edge
conflict (i, j, e, t), where the heads of two agents i, j ∈ I go
through the same edge e from opposite directions between
times t and t + 1. The second case is a vertex conflict
(i, j, v, t) where a vertex v is occupied by two agents i, j ∈ I
or their bodies at the same time t, i.e., v ∈ Oi(t)∧v ∈ Oj(t).

The problem MCPF-TT seeks to find a set of conflict-free
paths for the agents such that (1) the task at any v ∈ Vt is
executed by an eligible agent i ∈ fA(v), (2) the path for
each agent i ∈ I starts at its initial vertex and terminates at
a unique goal vertex u ∈ Vd such that i ∈ fA(u), and (3)
the sum of costs of all agents’ paths reaches the minimum.

Remark 1: When body length bi remains unchanged for
any agent at any target, MCPF-TT then becomes MCPF-D
(D stands for task duration), which has been studied [4].
When the body length of any agent is always zero and the
task duration τ i(v) = 0 for all v ∈ Vt, i ∈ fA(v), MCPF-TT
becomes MCPF [6].

III. PRELIMINARIES

A. Conflict-Based Search

Conflict-Based Search (CBS) [16] is a popular two-level
search algorithm that finds an optimal joint path for MAPF.
At the high-level, CBS starts with a root node Proot =
(π, g,Ω), where π = (π1, π2, . . . , πN) is the joint path that
connects origins and destinations of all agents respectively;
g is the sum of costs of all agents’ paths; Ω is a set
of constraints, and each constraint is of form (i, v, t) (or
(i, e, t)), which indicates agent i can not occupy the vertex
v (or edge e) at time t. The constraint set of the root node
Ωroot = ∅. CBS then selects a specific node P = (π, g,Ω)
from that has the smallest g-value, and detects conflicts along
the paths of any pair of agents. If no conflict is detected, π
is returned as an optimal joint path. Otherwise, according to
the detected conflict (i, j, v, t), two constraints (i, v, t) and
(j, v, t) are generated, and each of them corresponds to a new
constraint sets Ω

⋃
{i, v, t} and Ω

⋃
{j, v, t} (same to edge

conflicts (i, j, e, t)). For each of those two constraints sets Ω′,
CBS runs a low-level search to find a new path satisfying
all the constraints in Ω′. At the low-level, a single-agent
planner is invoked to plan an optimal path π′i that satisfies
all constraints related to agent i in Ω′. Then a new joint
path π′ is formed by copying the paths of other agents from
π and using π′i as the path of agent i, and a corresponding
node P ′ = (π′, g′,Ω′) is generated for high-level search. The
generated nodes are stored in an open list OPEN which is a
priority queue that ranks the nodes based on their g-cost from
the minimum to the maximum. In the next iteration, CBS
pops the cheapest node from OPEN and repeats the above
process. In CBS, the high-level search spans a binary tree,

Fig. 3. An illustration of CBSS [6], which interleaves target sequencing
and path planning.

Algorithm 1 Pseudocode for CBSS
INPUT: GW = (V W , EW , cW)
OUTPUT: a conflict-free joint path π in GW .

1: G1 = (V1, E1, c1)← GetTargetGraph(GW)
2: γ∗

1 ← K-best-Sequencing(G1,fA,K = 1)
3: Ω← ∅, π, g ← LowLevelPlan(γ∗

1 , Ω)
4: Add Proot,1 = (π, g,Ω) to OPEN
5: while OPEN ̸= ∅ do
6: P = (π, g,Ω)← OPEN.pop()
7: P ′ = (π′, g′,Ω′)← CheckNewRoot(P , OPEN)
8: cft← DetectConflict(π′)
9: if cft = NULL then return π′

10: Ω← GenerateConstraints(cft)
11: for all ωi ∈ Ω do
12: Ω′′ = Ω′ ∪ {ωi}
13: π′′, g′′ ← LowLevelPlan(γ(P ′), Ω′′)
14: Add P ′′ = (π′′, g′′,Ω′′) to OPEN
15: return failure

called constraint tree T , and leaf nodes of T are the ones in
OPEN for further expansion, until a node with collision-free
paths is found. CBS guarantees finding a conflict-free joint
path with the minimal cost.

B. Conflict-Based Steiner Search

CBSS [6] finds an optimal conflict-free joint path for
MCPF, and is summarized in Fig. 3 and Alg. 1. CBSS
alternates between target sequencing, allocate and order
the targets for each agent by solving a multi-agent TSP
(mTSP), and CBS-like path planning. For target sequenc-
ing, CBSS first creates a complete undirected metric graph
called the target graph GT = (V T , ET , cT), where the
vertex set V T includes all the start, targets and goals,
i.e., V T = Vo ∪ Vt ∪ Vd, and the cost of an edge
cT (u, v) in GT is the minimum path cost connecting u, v
in GW ignoring any agent-agent conflict. CBSS solves a K-
Best mTSP on GT (K-best-Sequencing) to obtain a set of
joint sequences γ∗

1 , γ
∗
2 , · · · , γ∗

K , where each joint sequence
γ∗
k = (γ∗1

k , γ∗2
k , · · · , γ∗N

k) consists of N individual target
sequence, and each individual sequence γ∗i

k is a path in GT

from vio to vid. As shown in Fig. 3, a joint sequence specifies
the allocation and visiting order of targets among the agents.
The cost of a joint sequence c(γ∗

k) is the sum of costs of

individual sequences in γ∗
k , and the K-best joint sequences

are the top K cheapest joint sequences in GT with increasing
costs, i.e., c(γ∗

1) ≤ c(γ∗
2) ≤ · · · ≤ c(γ∗

K). CBSS solves K-
Best mTSP in an incremental fashion by first setting K = 1
to only obtain γ∗

1 , and then solves K = 2 for γ∗
2 only when

needed as explained next.
For each joint sequence γ∗

k , CBSS lets all agents visit the
targets as specified by γ∗

k (LowLevelPlan) and uses CBS
like search to resolve conflicts among the agents (Generate-
Constraints), which creates a corresponding constraint tree
Tk. The open list of CBSS contains the leaf (open) nodes in
all trees Tk, and when the cost of a popped node is greater
than a threshold value (CheckNewRoot), CBSS increases K
to K + 1 and solves for the next-best joint sequence γ∗

K+1

and creates a new constraint tree. CBSS terminates if a node
with conflict-free joint path is popped from OPEN, which
is optimal or bounded sub-optimal depending on threshold
value that tunes when the next-best sequence is generated.

IV. CONFLICT RESOLUTION

Existing conflict resolution strategies [14]–[16] focus
mainly on MAPF with fixed body length. However, due
to the variable body length and task duration of MCPF-
TT, these strategies can be inapplicable or inefficient. This
section introduces new conflict resolution methods. We begin
with the case when there is no task duration at any target
and then the general case with task duration.

A. Without Task Duration

Let (i, bi, ki, j, bj , kj , v, t) denote a body conflict, which
means that the ki-th cart of agent i (with body length bi)
has a conflict with the kj-th cart of agent j (with body
length bj) at vertex v at time t. When such a body conflict
is first detected, the head vertex of either i or j must be at
v, since otherwise, these two agents must have collided at
earlier time steps which would be detected earlier. Without
loss of generality, we assume that the head vertex of agent j
is at the vertex v and kj = 0 for the rest of this section. Let
(i, bi, ki, v, ti) denote a body constraint, meaning that when
the body length of agent i is bi, the ki-th cart of agent i
can not occupy v at time ti. Then a body conflict can be
resolved by the following branching rule, which generates
two sets of constraints, where each set of constraint leads to
a new high-level node in CBS search.

Ωi = {(i, bi, ki, v, ti)|ti ∈ [t, t+ bj + ki]} (1)

Ωj = {(j, bj , 0, v, tj)|tj ∈ [t, t+ bi − ki]} (2)

The first set of constraints forbids the ki-th cart of agent i
(with body length bi) to occupy vertex v in the time range
[t, t+bj+ki]. The second set of constraints forbids the head
vertex of agent j (with body length bj) to occupy v in the
time range [t, t+ bi − ki].

Intuitively, these constraints leverage the tractor-trailer
model in MCPF-TT where each cart follows the path of the
former cart. If v is occupied by the k-th cart of agent i at
some time t, the agent must occupy v within time range
[t − ki, t + bi − ki] (v ∈ Oi(τ), τ ∈ [t − ki, t + bi − ki]),

which is called the occupation interval of agent i at v and
is denoted as OI(i, v, t) = [t− ki, t+ bi − ki].

To prove CBS with this new branching rule returns an
optimal solution, we need to show the two constraint sets are
mutually disjunctive [15]: Two sets Ωi and Ωj are mutually
disjunctive if a conflict-free joint path cannot simultaneously
violate any pair of constraints (ωi, ωj), ωi ∈ Ωi, ω

j ∈ Ωj .
In other words, if a joint path π simultaneously violates any
pair of such constraints, then π must have a conflict.

Theorem 1: In MCPF-TT, constraints (1) and (2) are
mutually disjunctive.

Proof: We need to show that, within the time ranges
as in constraints (1) and (2), for any pair of ti, tj , ti ∈
[t, t + bj + ki], tj ∈ [t, t + bi − ki], the two corresponding
occupation intervals OI(i, v, ti) = [ti − ki, ti + bi − ki] =
[τ ia, τ

i
b] and OI(j, v, tj) = [tj , tj + bj] = [τ ja , τ

j
b] intersects,

which indicates a conflict.1 If τ ia ∈ [τ ja , τ
j
b] (or τ ja ∈ [τ ia, τ

i
b]),

then OI(i, v, ti) ∩ OI(j, v, tj) contains at least τ ia (or τ ib)
and they intersect. Now we only need to consider the cases
τ ia > τ jb and τ ja > τ ib , and we show that these two cases
cannot happen.

For the case τ ia > τ jb , due to ti ∈ [t, t+ bj + ki] and tj ∈
[t, t+bi−ki], we know τ ia = ti−ki ≤ t+bj+ki−ki = t+bj

and τ jb = tj + bj ≥ t + bj . Thus, τ ia ≤ t + bj ≤ τ jb which
contradicts with τ ia > τ jb .

For the case τ ja > τ ib , due to ti ∈ [t, t + bj + ki] and
tj ∈ [t, t + bi − ki], we know τ ja = tj ≤ t + bi − ki and
τ ib = ti + bi − ki ≥ t+ bi − ki. Thus, τ ja ≤ t+ bi − ki ≤ τ ib
which contradicts with τ ja > τ ib .

Therefore, if a joint path π simultaneously violates any
pair of constraints (ωi, ωj), ωi ∈ Ωi, ω

j ∈ Ωj , π must have a
conflict, and constraints (1) and (2) are mutually disjunctive.

B. With Task Duration

When task duration are non-zero, we include the task dura-
tion into the branching rule. Let (i, bi, ki, j, bj , kj , v, t, ts, te)
denote a body conflict with task duration, which means that
the ki-th cart of agent i (with body length bi) collides with
the kj-th cart of agent j (with body length bj) at vertex v at
time t. Here, agents i and j cannot execute tasks at the same
vertex when such a conflict is first detected, since otherwise,
another conflict at an earlier time would be detected. Without
loss of generality, we assume that agent i is executing a task
and ts and te represent the start and end time of agent i’s
task respectively.

To resolve the body conflict (i, bi, ki, j, bj , 0, v, t, ts, te),
for agent i that is executing a task, define a new form of
constraint (i, bi, ki, v, ti,∆t), which means that when the
body length of agent i is bi, the ki-th vertex of agent i can
not occupy v at time ti to start a task whose task duration is
∆t = te− ts. Then two sets of constraints can be generated:

Ωi = {(i, bi, ki, v, ti,∆t)|ti ∈ [ts, t+ bj + ki]} (3)

Ωj = {(j, bj , 0, v, tj)|tj ∈ [t, te + bi − ki]} (4)

1Note that kj disappears in OI(j, v, tj) as kj = 0 (j’s head is at v).

Fig. 4. Toy examples for conflict resolution. (a) shows a body conflict
(i, 4, 2, j, 4, 0, v, 5). (b) shows a body conflict (i, 4, 2, j, 4, 0, v, 5, 2, 10),
where agent i is executing a task.

The first set forbids the ki-th cart of agent i (with body length
bi) to occupy vertex v to start a task whose task duration is
∆t in the time range [ts, t+ bj +ki]. The second set forbids
the head vertex of agent j (with body length bj) to occupy
v in the time range [t, te + bi − ki].

It should be noted that if v is occupied by the k-th vertex
of agent i at some time t and agent i starts to execute a
task whose task duration is ∆t at time t, since each cart
follows the path of the former cart and agent i can not move
during the task execution, the agent must occupy v within
time range [t − ki, t + ∆t + bi − ki] (v ∈ Oi(τ), τ ∈ [t −
ki, t +∆t + bi − k]). So the occupation interval of agent i
at v OI(i, v, t) is [t− ki, t+∆t+ bi − ki].

These two sets of constraints are mutually disjunctive,
which can be shown in a similar way as aforementioned,
and we thus omit the proof to save space.

Theorem 2: In MCPF-TT, constraints (3) and (4) are
mutually disjunctive

The edge conflicts in MCPF-TT are similar to MCPF and
only occur in the head. Therefore, our resolution strategy is
same to CBS, which is mentioned in Sec. III-A

Example 1: For the example (a) in Fig. 4, the constraints
for agent i is Ωi = {(i, 4, 2, v, ti)|ti ∈ [5, 11]} and the
constraints for agent j is Ωj = {(j, 4, 0, v, tj)|tj ∈ [5, 7]}.
For the example (b) in Fig. 4, the constraints for agent i is
Ωi = {(i, 4, 2, v, ti, 8)|ti ∈ [2, 11]} and the constraints for
agent j is Ωj = {(j, 4, 0, v, tj)|tj ∈ [5, 12]}.

C. Relation to the Existing Conflict Resolution Methods

Our method differs from the existing conflict resolution
techniques in Multi-Train Path Finding (MTPF) as follows.
Specifically, MT-CBS for MTPF [14] resolves a vertex
conflict (i, j, v, t) by adding two sets of constraints Ωi =
{v /∈ Oi(t)} and Ωj = {v /∈ Oj(t)}, respectively, to prohibit
any part of agent i and j from occupying vertex a common
v at time t. This rule adds multiple constraints over many
vertices at the same time step. In contrast, our new branching
rules seek to add multiple constraints on the same vertex but
over a time interval. We use the rule in [14] as a baseline in
the experiments in Sec. VI.

V. TRACTOR-TRAILER COMBINATORIAL A*

For the low-level planning, a naive approach to plan a path
for agent i given γi is running A* to find a minimum-cost
path from one target to the next and concatenate these paths
together. We call this approach as sequential A*. Sequential
A* does not guarantee completeness or solution optimality,

Fig. 5. An example that compares Sequential A* and TTCA*. Sequential
A* fails to find any solution while TTCA* finds an optimal solution by
searching in a larger state space while considering self-conflicts.

while our TTCA* guarantees completeness and solution
optimality. We first illustrate the limitation of sequential A*
with the following Example 2, and then present our TTCA*.

Example 2: In Fig. 5, an agent needs to enter a room-
like area to for a target, and then exit the room to reach the
goal. Sequential A* plans a path that the agent turns left and
goes straight to the target, which is an optimal path from
the current vertex to that target. However, the agent’s body
prevents the agent from exiting the room, and sequential A*
thus returns no solution. In contrast, for TTCA*, when the
agent goes straight to the task vertex, the search can find
that the agent can not exit the room when the GetSuccessor
returns ∅ for a certain state s. Then, TTCA* can find an
alternate state, where the agent makes a detour so that it can
exit the room after executing the task. Even if the detour
is not an optimal path from the current vertex to the task
vertex, it is part of a “global” optimal path for the agent.

A. Algorithm

1) Search State: To avoid self-collision and find an opti-
mal individual path, TTCA* searches over a time-augmented
state space that includes the position of the attached carts.
Let s = (gi, Oi, ai) denote the state of an agent i, which
is a tuple of a time step gi (i.e., the cost of the path), the
occupation list Oi at that time, and ai ∈ Z+, a non-negative
integer, indicating the number of tasks that has been executed
along the path. Let γi denote the ordered list of target vertices
that are assigned to agent i and γi(k) denote the k-th target
vertices of agent i. If ai = 0, the agent has not yet executed
any task, and if ai = |γi|, the agent has completed all tasks.
Both Oi and ai affects the set of successors of a state due
to self-collision avoidance and task execution as explained
in the next paragraph.

2) Generate Successors: GetSuccessor denotes the proce-
dure in TTCA* that returns the valid successor states of any
given state s. The GetSuccessor procedure returns the set of
all reachable states from the given state sk. Specifically, if
|Oi| = 1, the agent has no cart and can move to any adjacent
vertex of vih(O

i) or wait in place. Otherwise (i.e., |Oi| > 1),

Algorithm 2 Pseudocode for TTCA*
1: so = (gi = 0, Oi = {vio}, ai = 0), f(so)← 0 +MH(so)
2: add so into OPEN, CLOSED ← ∅
3: while OPEN not empty do ▷ Main search loop.
4: sk = (gik, O

i
k, a

i
k)← pop from OPEN

5: add sk to CLOSED
6: if |Oi

k| = |γi|+ 1 and vih(O
i
k) = vid then

7: return Reconstruct(sk)
8: Ssucc ← GetSuccessors(sk)
9: for all s′ ∈ Ssucc do ▷ State expansion.

10: if ConstraintCheck(s′) then
11: continue
12: if s′ ∈ OPEN ∪ CLOSED then
13: continue
14: f(s′)← g(s′) +MH(s′)
15: parent(s′) ← s
16: add s′ to OPEN
17: return Failure

the agent can wait in place or move to all adjacent vertices
that are not part of Oi, which avoids the self-collision. If the
agent’s head is next to the next target vertex γi(|Oi| + 1),
it can choose to start the task or not (i.e., just pass by).
If starting the task, the number of tasks ai that have been
executed is increased by one in the generated successor state.
Finally, if a successor s′ = (gi

′
, Oi′ , ai

′
) is generated before,

i.e., s′ ∈ OPEN ∪ CLOSED, then s′ will be skipped (Line 12
in Alg. 2). Here, CLOSED is a set that contains states that
were popped from OPEN and were expanded.

3) Heuristics: To expedite the search, TTCA* uses a
heuristic value h(s) that considers the current position of
the agent and the remaining tasks to be executed. To avoid
confusion with the previous notations, let vih denote the head
vertex of the occupation list Oi in a state s in TTCA*, and
let cπ(u, v) denote the minimum path cost from u to v in
the workspace graph GW . For a state s = (gi, Oi, ai), its
heuristic is:

h(s) = cπ(v
i
h, γ

i(ai + 1)) +

|γi|−1∑
k=ai+1

cπ(γ
i(k), γi(k + 1))

(5)

Here, the first term estimates the cost-to-go from the current
vertex vih to the immediate next target γi(k) to be visited, the
second term estimates the cost to visit all remaining targets
in the same order as in γi and end at the goal vertex (i.e.,
the last vertex in γi). This heuristic is admissible.

4) Constraint Check: TTCA* plans a path subject to
a set of constraints Ω that is added by the high-level
search. These constraints include edge constraints (i, e, t)
and body constraints as aforementioned. For each successor
state s′ = (gi

′
, Oi′ , ai

′
) of state s = (gi, Oi, ai), if ai

′
=

ai, then agent i just move to the next vertex and do not
execute a task. In this case, ConstraintCheck considers the
body constraints of form (i, bi, ki, v, ti) in Ω, and checks
if Ω contains any constraint (i, |Oi′ |, k, Oi′(gi

′
, k), gi

′
), k ∈

[0, |Oi′ | − 1]. If so, s′ violate a constraint and is thus
pruned, and otherwise, s′ is generated. If ai

′
= ai + 1,

the agent executes a task. ConstraintCheck considers the

body constraints with task duration, which are of form
(i, bi, ki, v, ti,∆t) , and checks if Ω contains any of the
constraints (i, |Oi′ |, k, Oi′(gi

′
, k), gi, gi

′ −gi), k ∈ [0, |O′|−
1]. If so, s′ is pruned, and otherwise, s′ is generated. Finally,
edge constraints (i, e, t) are handled in a similar way as in
CBS by checking if the transition from s to s′ uses any edge
e at any forbidden time t.

5) State Selection: When TTCA* plans a path for agent
i, it also considers the paths of other agents. TTCA* plans
an optimal path for agent i and then seeks to minimize
the number of conflicts with other agents as the secondary
objective, which can help reduce the number of conflicts to
be resolved on the high-level search. Similar ideas can be
found in other CBS variants [16], [17]. Specifically, TTCA*
sorts its OPEN list by two values. The first value is the f-
value f(s) := g(s)+h(s), which is same to the regular A*.
Using f-value to prioritize states in OPEN helps TTCA* find
an optimal path. When two states have the same f -value, then
the second value is used, which is the number of conflicts
between the path of agent i that is being planned, and the
paths of the other agents.

B. Relation to Multi-Label A*

TTCA* is related to the Multi-Label A* (MLA*) [18]
that is a low-level single-agent planner for the Multi-Agent
Pickup and Delivery (MAPD) problem, where each agent
needs to visit both the pickup and delivery position. MLA*
employs a binary variable to tell whether the agent is heading
to the pickup or the delivery position. TTCA* differs from
MLA* in the following aspects. First, TTCA* needs to visit
multiple targets as opposed to only two targets (pickup and
delivery), and thus uses an integer to indicate the number of
visited targets. Second, TTCA* has to consider body length
and body positions to avoid self-conflicts. Third, due to the
high-level search CBSS-TT and the generated constraints,
TTCA* needs to handle constraints that are defined on the
agent’s body.

VI. EXPERIMENTAL RESULTS

We refer to the conflict resolution method in MTPF [14]
as the “Old strategy” and we call our new body conflict
resolution method as “New strategy”. We compare the fol-
lowing four algorithms. The first one uses the Old strategy
on the high-level of CBSS and Sequential A* on the low-
level, which is denoted as OS. The second one uses the New
strategy on the high-level of CBSS and Sequential A* on
the low-level, which is denoted as NS. The third one uses
the Old strategy on the high-level of CBSS and TTCA* on
the low-level, which is denoted as OT. The fourth one is
CBSS-TT, which uses the New strategy on the high-level
and TTCA* on its low-level, which is denoted as NT. All
algorithms use the same method for target sequencing as in
the original CBSS [6].

We use three different maps from an online data set [19]:
empty, random, and warehouse as shown on the top of Fig. 6.
We test the algorithms by fixing the number of agents N =
10 and vary the number of tasks M = 10, 20, 30, 40, since

Fig. 6. (a)-(c): the success ratios of OS, NS, OT and NT when the number of agents N = 10 and the number of tasks M = 10, 20, 30, 40 at different
maps. (d)-(f): the minimum, average and maximum number of high-level nodes expanded by OS, NS, OT and NT. (g)-(i): the minimum, average and
maximum runtime of OS, NS, OT and NT.

the number of tasks affect the body lengths, which is the
main focus of this paper. The runtime limit of each instance
is 120 seconds. The task duration of all tasks is 10 time steps.
We use a hyper-parameter ϵ = 1.0 in CBSS [6], which tunes
the solution sub-optimality bound, and lets the algorithms
spend more time on conflict resolution as opposed to target
sequencing. We implement all algorithms in Python and run
all tests on a computer with an Intel Core i7-11800H CPU
and 16G RAM.

A. Success Ratios

Fig. 6 (a)-(c) show the success ratios of the methods. We
observe that, the use of TTCA* for the low-level search can
often improve the success ratios. For example, in the empty-
32-32, OT and NT (both with TTCA* as the low-level)
enhances the success ratios up to around 20%. In the random
map, due to the cluttered obstacles, some instances become
infeasible due to self-conflicts, especially when agents have
long body lengths, since there is no way for an agent to
access some targets and then leave. As a result, the success

rates in the random map are lower than the other two maps.
In the large warehouse map, the success ratios fluctuate, and
there are also cases where OS and NS (using sequential A* as
the low-level) achieves better success rates than OT and NT.
A possible reason is that, TTCA* needs to search a larger
state space, and as the map size grows, each TTCA* call
may take longer time, which thus lowers the overall success
rates. This points out a future work direction on improving
TTCA* to handle larger maps more efficiently.

B. Number of Expansions

Fig. 6 (d)-(f) shows the number of conflicts that are
resolved, i.e., the number of high-level nodes that are ex-
panded. First, the use of TTCA* as the low-level planner
helps reduce the number of expansions, and a possible reason
is that TTCA* is complete and can find solutions for cases
that are otherwise failed to be solved by sequential A*. As a
result, OT and NT find solution earlier while OS and NS
(using sequential A*) have to expand more nodes before
finding a solution. Second, the new branching rule sometimes

Fig. 7. The cost reduction about NS and NT when the number of agents
N = 10 and the number of tasks M = 10, 20, 30, 40 at different maps.
The cost of paths from NT is lower than that from NS. As the tasks increase,
the cost reduction gradually increases.

expands fewer nodes than the old branching rule, especially
in crowded and complex scenarios that may lead to more
conflicts. For example, in the random map, when M = 40,
comparing to OS and OT, NS and NT require up to 65.6%
fewer expansions (reducing 122 expansions down to 42).

C. Runtime

We compare the runtime of all instances in Fig. 6 (g)-(i),
and if an algorithm times out, its runtime is 120 seconds. In
the empty map, OT and NT usually have shorter runtime than
OS and NS, and the reason is that OT and NT reduces the
number of high-level nodes expanded as verified in Fig. 6(d)
and as discussed in the previous subsection. For the random
map, the runtime of all four methods are similar while NT
is slightly better than the other three in terms of the average
runtime. For the warehouse map, there is no clear trend
among the runtimes. The reason is that, although NT and
OT have fewer number of expansions than OS and NS as
shown in Fig. 6 (f), each expansion in NT and OT takes
more time, because TTCA* needs longer runtime per call
than sequential A*, especially in this large warehouse map.

D. Solution Quality

Although all methods have the same solution sub-
optimality bounds, the actual solution costs differ. As shown
in Fig. 7, we measure the cost difference g(πNS)− g(πNT)
to compare their path costs The paths from NT is better than
that of NS. The maximum reduction reaches 14 time steps.
As the tasks increase and the map become more complex,
the gap between NS and NT gradually increases. We also
compare the cost from OT with the cost from NT. All costs
from OT are same to that from NT. It is means that the new
strategy can only reduce the number of expansions, while the
low-level planenr TTCA* can help find a cheaper solution.

VII. CONCLUSION AND FUTURE WORK

This paper investigates a new problem MCPF-TT, and
develops new conflict resolution techniques for agents with
long bodies and a new single-agent planner for agents
with varying body lengths. Experimental results show the
advantages of our new approaches in different settings. For
future work, one can consider improving TTCA* for large
maps, or developing sub-optimal planners for MCPF-TT to

handle many agents with many tasks. One can also consider
handling delays in task duration for agents with a variable
body length.

REFERENCES

[1] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Trav-
eling Salesman Problem: A Computational Study (Princeton Series
in Applied Mathematics). Princeton, NJ, USA: Princeton University
Press, 2007.

[2] J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Twenty-Seventh AAAI Conference
on Artificial Intelligence, 2013.

[3] M. L. Americas. (2025) Move the world forward. Accessed:
2025-02-20. [Online]. Available: https://www.logisnextamericas.com/
en/logisnext

[4] Y. Zhang, X. Wu, H. Wang, and Z. Ren, “Multi-agent combinato-
rial path finding with heterogeneous task duration,” arXiv preprint
arXiv:2311.15330, 2023.

[5] Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey,
“Integrated task assignment and path planning for capacitated multi-
agent pickup and delivery,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 5816–5823, 2021.

[6] Z. Ren, S. Rathinam, and H. Choset, “CBSS: A New Approach
for Multiagent Combinatorial Path Finding,” IEEE Transactions on
Robotics, vol. 39, no. 4, pp. 2669–2683, 2023.

[7] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery,” in Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS),
2019.

[8] K. Brown, O. Peltzer, M. A. Sehr, M. Schwager, and M. J. Kochen-
derfer, “Optimal sequential task assignment and path finding for
multi-agent robotic assembly planning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 441–447.

[9] Z. Ren, S. Rathinam, and H. Choset, “A bounded sub-optimal approach
for multi-agent combinatorial path finding,” IEEE Transactions on
Automation Science and Engineering, vol. 22, pp. 7590–7605, 2025.

[10] Z. Ren, A. Nandy, S. Rathinam, and H. Choset, “Dms*: Towards
minimizing makespan for multi-agent combinatorial path finding,”
IEEE Robotics and Automation Letters, vol. 9, no. 9, pp. 7987–7994,
2024.

[11] Z. Ren, S. Rathinam, and H. Choset, “Ms*: A new exact algorithm
for multi-agent simultaneous multi-goal sequencing and path finding,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA), 2021, pp. 11 560–11 565.

[12] Y. Zhang, H. Wang, and Z. Ren, “A short summary of multi-agent
combinatorial path finding with heterogeneous task duration,” in
Proceedings of the International Symposium on Combinatorial Search,
vol. 17, 2024, pp. 301–302.

[13] D. Atzmon, R. Stern, A. Felner, G. Wagner, R. Barták, and N.-F. Zhou,
“Robust multi-agent path finding,” in Proceedings of the international
symposium on combinatorial search, vol. 9, no. 1, 2018, pp. 2–9.

[14] D. Atzmon, A. Diei, and D. Rave, “Multi-train path finding,” in
Proceedings of the International Symposium on Combinatorial Search,
vol. 10, no. 1, 2019, pp. 125–129.

[15] Z. Chen, J. Li, D. Harabor, P. J. Stuckey, and S. Koenig, “Multi-train
path finding revisited,” in Proceedings of the International Symposium
on Combinatorial Search, vol. 15, no. 1, 2022, pp. 38–46.

[16] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[17] J. Li, D. Harabor, P. J. Stuckey, H. Ma, G. Gange, and S. Koenig,
“Pairwise symmetry reasoning for multi-agent path finding search,”
Artificial Intelligence, vol. 301, p. 103574, 2021.

[18] F. Grenouilleau, W.-J. Van Hoeve, and J. N. Hooker, “A multi-
label a* algorithm for multi-agent pathfinding,” in Proceedings of
the international conference on automated planning and scheduling,
vol. 29, 2019, pp. 181–185.

[19] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding: Def-
initions, variants, and benchmarks,” arXiv preprint arXiv:1906.08291,
2019.

https://www.logisnextamericas.com/en/logisnext
https://www.logisnextamericas.com/en/logisnext

	I Introduction
	I-A Other Related Work

	II Problem Formulation
	II-A Workspace and Agents
	II-B Body Length and Occupation List
	II-C Path and Conflicts

	III Preliminaries
	III-A Conflict-Based Search
	III-B Conflict-Based Steiner Search

	IV Conflict Resolution
	IV-A Without Task Duration
	IV-B With Task Duration
	IV-C Relation to the Existing Conflict Resolution Methods

	V Tractor-Trailer Combinatorial A*
	V-A Algorithm
	V-A.1 Search State
	V-A.2 Generate Successors
	V-A.3 Heuristics
	V-A.4 Constraint Check
	V-A.5 State Selection

	V-B Relation to Multi-Label A*

	VI Experimental Results
	VI-A Success Ratios
	VI-B Number of Expansions
	VI-C Runtime
	VI-D Solution Quality

	VII Conclusion and Future Work
	References

