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Abstract— Multi-Agent Teamwise Cooperative Path Finding
(TC-MAPF) seeks collision-free paths for the agents from their
start to goal locations. In addition, agents are grouped into
multiple teams, and each team has its own objective function to
optimize. TC-MAPF arises in scenarios such as the coordination
of multiple autonomous vehicles at a signal-free traffic inter-
section, where, for example, the vehicles from each direction
naturally forms a team. TC-MAPF was recently studied and
optimal planners such as TC-CBS has been developed. While
being able to find all Pareto-optimal solutions for TC-MAPF,
these optimal planners usually suffer from limited scalability
as the number of agents grows. This paper develops a bounded
sub-optimal planner TC-CBS-TF for TC-MAPF, trading off
solution quality for scalability, by leveraging and extending
several bounded sub-optimal search techniques for MAPF to
handle multiple teams as in TC-MAPF. We test TC-CBS-TF
and baselines on various maps with up to 50 agents, and TC-
CBS-TF achieves up to 68% higher success rates.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) aims to plan collision-
free paths for multiple agents from start to goal locations,
which has been widely studied over the last decade [1].
Traditional MAPF planner typically considers the scenario
where all agents are cooperative in a sense that all agents
seek to optimize a common objective function such as
the sum of agents’ arrival times [1], [2]. However, there
are scenarios where agents are not fully cooperative. A
motivating example is the traffic intersection (Fig. 1), where
agents from one direction only pay attention to their traversal
time through the intersection, without worrying about the
traversal time of the agents from other directions. Consider
a four-way intersection, the agents naturally form four teams,
and each team seeks to minimize its own traversal time. Since
the intersection is shared by all the teams and agent-agent
collision must be avoided, the motion coordination has to
trade the traversal time of one team for the other.

This motivates the Multi-Agent Teamwise Cooperative
Path Finding (TC-MAPF) problem [3], [4], a generalization
of MAPF where agents are grouped into teams, and each
team has its own objective function. Specifically, each agent
has its own start and goal locations and belongs to at least
one team. Every team has its own objective function to
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Fig. 1: An example with 32 agents divided into 4 teams
traversing several intersections. TC-MAPF seeks Pareto-
optimal solutions with different trade-off among the teams.

minimize such as min-sum, the sum of arrival times of the
agents within the team. As there are more than one teams in
general, TC-MAPF seeks to minimize an objective vector,
where each component of the vector corresponds to the
objective of a team. In the presence of multiple objectives,
in general, there is no single solution that minimizes all
objectives simultaneously. TC-MAPF thus aims to find a set
of Pareto-optimal solutions. A solution is Pareto-optimal if
one cannot improve over one objective without deteriorating
another objective. TC-MAPF differs from the existing Multi-
Agent Multi-Objective Path Finding (MOMAPF) [5], [6],
self-interested MAPF [7] and adversarial MAPF [8].

TC-MAPF generalizes MAPF from one team to multiple
teams. MAPF is NP-hard [9] and so is TC-MAPF. Our prior
work developed exact algorithms for TC-MAPF that can
find all Pareto-optimal solutions, such as TC-CBS and TC-
M* [3], [4], which extends the popular conflict-based search
(CBS) [2] and M* [10] algorithms for MAPF to handle TC-
MAPF, and discussed the conditions under which TC-CBS is
complete and can find all Pareto-optimal solutions. TC-CBS
was then improved by TC-CBS-T [4] with a transformation
method to mitigate its incompleteness. While being able to
find Pareto-optimal solutions, these exact algorithms often
scale poorly as the number of agents or teams increases.

To address the issue of scalability, this paper develops
a bounded sub-optimal planner for TC-MAPF, trading off
solution quality for scalability. We propose TC-CBS-TF (F
for Focal), which leverages and integrates several exist-
ing bounded sub-optimal search techniques such as focal
search [11] into TC-CBS-TF. It also leverages the idea of
flex distribution [12] in MAPF and proposes a technique to



smartly allocate the sub-optimality bound factor among the
teams, based on the paths of all agents within the same teams,
to improve the planning efficiency.

We evaluated our approach and baselines in both the
conventional grid maps for MAPF and traffic intersection
grid maps. The results show that TC-CBS-TF doubles the
amount of agents that the original TC-CBS-T can handle.
The results also verify that the proposed flex distribution for
TC-MAPF can enhance the success rates for more than 20%
especially when the bound is tight.

A. Related Work

MAPF often minimizes a single-objective. When there
is only one team including all agents, TC-MAPF becomes
MAPF. To solve MAPF to optimality, various methods were
developed, which focus on either min-sum [2], [10] or min-
max [13], [14] problems. Recent work generalizes MAPF
to Multi-Objective MAPF [5], [6], [15], [16] by associating
a vector-cost (rather than a scalar-cost) to the action of an
agent, where each component of the cost vector represents an
objective to be minimized. MOMAPF requires minimizing
the sum of accumulated cost vectors over all agents along
their paths. The TC-MAPF differs from MOMAPF, since
the action costs are scalars, and there are multiple teams,
each with its own objective. Currently, there are only ex-
act approaches for TC-MAPF [3], [4], which have limited
scalability with respect to the number of agents.

Bounded sub-optimal MAPF algorithms have been exten-
sively studied in the literature. Variants of CBS typically
use focal search to ensure sub-optimality bound [11], [17],
[18]. Recent work further studies how to smartly distribute
the bound among the agents to improve the runtime ef-
ficiency [12]. However, these algorithms cannot directly
handle the teams in TC-MAPF.

II. PROBLEM STATEMENT

Let I = {1,2,..., N} denote a set of N agents. All agents
share a workspace represented as a finite graph G = (V, E),
where V is the set of possible locations (vertices) and E C
V x V is the set of possible actions (edges) that move an
agent between adjacent vertices. Each edge e € F has a
positive cost, cost(e) € RT. Let v, € V and v’, € V denote
the start and goal locations for agent ¢ € I, respectively.

We use a superscript ¢ € I to associate variables with a
specific agent (e.g., v* € V). A path for agent ¢ from v to
v} is a sequence of vertices 7' (v, v}) = (vi,vs,...,v}) in
G. The cost of this path is the sum of the costs of the edges
traversed: g(m Y(vh,vh)) = Zf i cost (v, J+1) We simply
use 7 for the path from v! to v%, and g' = g(n") for its
cost, when unambiguous.

Agents run synchronously based on a common global
clock starting at ¢ = 0. Each action (moving to an adjacent
vertex or waiting at the current vertex) takes one unit of time.
A conflict occurs if two different agents 7, j € I occupy the
same vertex at the same time (vertex conflict) or traverse the
same edge in opposite directions between times ¢ and ¢ + 1
(edge conflict).

LetT ={T;,j =1,2,..., M} be a given set of M teams,
where each team T; C I is a subset of agents. An agent can
belong to multiple teams and teams need not be disjoint.
For a team T}, let 77 = {7|Vi € T;} denote the set of
individual paths for agents in that team. Each team 7} has
an associated objective function g'i whose value depends
on the paths 775, This function g75 is non-decreasing with
respect to the individual path costs g* for i € 7;. Common
examples include the sum of costs (¢77 := ZieTj g%) or the
maximum cost (¢77 := max;er, g°).

A solution 7 consists of conflict-free path 7 for every
agent 7 € I. The quality of a solution 7 is represented by an
objective vector () == {g%i(n) | j =1,2,..., M}, where
each component g% (7) is the objective value for team T}
based on the paths in m. We also refer to objective vectors
as cost vectors. We compare solutions by comparing their
objective vectors using the concept of dominance [19].

Deﬁnltlon 1 (Dominance). Given_two objective vectors a
and b of length M, d dominates b, denoted @ < b, if and
only if ap, < by, for all m € {1,..., M}, and aj, < by, for
at least one k € {1,..., M}. In addition, if a,, < by, for
all m, we write d < b.

A solution 7 is Pareto-optimal if no other solution 7’
exists such that §(7') < g(). The set of all Pareto-optimal
solutions is denoted by II,., and the corresponding set of
objective vectors C,, = {g§(m)|w € IL.} forms the Pareto-
optimal front. The goal of TC-MAPF is to find II, and C,.

Definition 2 (a-approximation Set and Front). A set of
solutions 11, is an a-approximation of the Pareto-optimal
set 11, if for every Pareto-optimal solution 7* & 11, there
exists at least one solution T € 11, such that g(m) < ag(7*),

a > 1. Here, ag(r*) = (ag™ (7*),...,ag™ (7*)) denotes
element-wise product. The corresponding cost vectors of 11,
is called an a-approximation of the Pareto-optimal front.

Problem 1 (Bounded Sub-optimal TC-MAPF). Given a
TC-MAPF instance (G, {vi}, {vi},{T;}, {97 }) and a sub-
optimality factor a > 0, the goal is to find a a-approximation
of the Pareto-optimal set 11, and the corresponding cost
vectors. Additionally, 11, should be minimal in a sense that
it contains only cost-unique and mutually non-dominated
solutions in 11,,.

III. METHOD

Our TC-CBS-TF builds upon TC-CBS [3], [4], bounded
sub-optimal search techniques from Enhanced CBS (ECBS)
[11] and Flex Distribution [12]. The main idea is to distribute
the sub-optimality bound among the agents in an intelligent
way to speed up the conflict resolution. We leverage this idea
and take the team settings in TC-MAPF into consideration.

A. Preliminaries

1) Conflict-Based Search (CBS): CBS [2] is a two-level
algorithm for (single-objective) MAPF, including a high-
level search over a constraint tree (CT), and a low-level
search that computes individual agent paths under given



constraints. In CBS, a vertex conflict is represented by a
tuple (4,4, v,t) indicating that two agents ¢ and j occupy
the same vertex v at the same time ¢. To resolve it, the
high-level search generates two child nodes in the CT, each
introducing a constraint: (¢,v,t) or (j,v,t), which forbids
the corresponding agent from occupying vertex v at time
t. Similarly, an edge conflict (i,j,u,v,t,t + 1) indicates
agents ¢ and j traverse the same edge (u,v) in opposite
directions between times ¢t and ¢+1. To resolve it, each of the
two generated CT nodes adds an edge constraint: (i, u,v,t)
or (j,v,u,t), which forbids the corresponding agent from
traversing the edge at time ¢. Each of the generated CT node
then invokes the low-level of CBS, which employs a single-
agent planner (like A*) to find optimal paths for agents under
a given set of constraints.

The high-level of CBS performs a best-first search on a
CT, where each CT node P contains a set of constraints
Q, a joint path w, which consists of paths satisfying Q) of
all agents ¢ € I, and the total cost g(m). If m contains a
conflict (4, j, v, t), the node P is split into two children, each
inheriting 2 and adding a new constraint (e.g., (4,v,t) for
one child, (j,v,t) for the other). The low-level planner is
invoked for the newly constrained agent to update its path,
and then, a new CT node is created. All leaf nodes of the
CT forms the OPEN list, which is a priority queue that ranks
nodes based on their g(m) value from the minimum to the
maximum. The high-level iteratively expands the CT node
with the minimum cost g(7) from OPEN until a solution is
found, which is guaranteed to be an optimal solution for any
solvable MAPF instance.

2) Teamwise Cooperative CBS with Transformation (TC-
CBS-T): TC-CBS extends CBS to the TC-MAPF setting [3],
which is shown in Alg. 1. The key differences in TC-CBS
from CBS can be summarized as follows. First, TC-CBS
stores team objective vectors ¢, as opposed to the scalar
cost g in CBS, in CT nodes, and uses lexicographic order
based on g of CT nodes in the OPEN list. Second, TC-CBS
maintains a set of solution cost vectors C, each of the cost
vector there corresponds to a Pareto-optimal solution that
were found so far during planning. TC-CBS filters CT nodes
that are already dominated by solution cost vectors in C. It
has been shown that TC-CBS is incomplete [4], in a sense
that even if a given problem instance is solvable, TC-CBS
may still never terminate in finite time.

TC-CBS-T [4] addresses this incompleteness by applying
a transformation to the objective vectors during the search.
For each team T}, the transformed objective is:

g7 () = g7 (1) + 68igr, ' (') (1)

where § is a small positive constant. Such a transformation
in the objective vector allows TC-CBS-T to terminate in
finite time for all solvable instances, however, at the cost
of potentially missing some Pareto-optimal solutions. The
conditions on § under which TC-CBS-T finds all Pareto-
optimal solutions is detailed in [4].

As shown by the black text in Alg. 1, TC-CBS-T priori-
tizes CT nodes based on their transformed objective vectors

Algorithm 1 Pseudocode for TC-CBS-T and TC-CBS-TF

: Compute P, = (1o, (Jr(m5)), ) and add P, to OPEN
: Add P, to FOCAL
C+0
: while OPEN # () do
% = (Tky Gk Gib k., 2k ) — arg ming,crocar he(n)
Remove P, from OPEN and FOCAL
!l P, = (Wk,ﬁk, Qk) < OPEN.pOp()
if e-Filter (P:) then continue
/I if Filter (Py) then continue
10: cft < DetectConflict(my)
11: if ¢cft = () then
12: C «+ UpdateSolutionSet(C, Py)
13: continue
14: Q « GenConstr(cft)
15:  for all W' € Q do

AN I T

b

16: Q= QU {w'}

17: K <+ GetFlexFactor(i, P, w)

18: T, < FocalSearch(i, {2;)

19: Il w, < LowLevelOptimalSearch(z, £2;)
20: if 72 = () then continue

21: 7 < T, replace L in m; with ¢
22: P, < (71, G1, 9iv.1, 1)

23: Il P + (71'1,571,91)

24: P, + Transform(FP;)

25: if e-Filter (P)) then continue

26: // if Filter (P;) then continue

27: Add P, to OPEN

28: Update FOCAL

29: return Untransform(C')

using lexicographic order (Line 7 in Alg. 1). When a new
CT node P, is generated, the transformed objective vector
is calculated for P; using Eq. (1) before P, is added to
OPEN (Line 27 in Alg. 1). When a node Py representing
a solution is popped, its transformed vector is added to the
solution set C' for filtering. Solution filtering (Lines 9, 26 in
Alg. 1) compares the transformed cost vector g(P) of the
current node P against any solution vector in C' that was
already found during planning. If any vector in C' dominates
or is equal to gy(P), then P is discarded. When TC-CBS-
T terminates, all solution cost vectors are untransformed
(Line 29) and then returned.

Intuitively, TC-CBS-T plans in a transformed objective
space, and untransforms the solution cost vectors found right
before termination. By finding the Pareto-optimal front in
a transformed objective space, TC-CBS-T guarantees com-
pleteness and ensures that each solution it returns is Pareto-
optimal to the original problem. However, TC-CBS-T may
miss some Pareto-optimal solution to the original problem if
the parameter ¢ in Eq. (1) is not chosen properly [4].

3) Enhanced CBS (ECBS): ECBS [11] is a bounded sub-
optimal variant of CBS for MAPF which returns a solution
with cost g that is at most w times the true optimal cost
g*, where w > 1 is a given sub-optimality factor. The
low-level in ECBS employs focal search, a bounded sub-
optimal variant of A*. This low-level focal search also
returns fimin(¢), the minimum f-value of all nodes in the
(low-level) open list when the search terminates. This fyin(7)
is a lower bound on the optimal path cost for agent .

At the high-level, each CT node P also stores the lower



bounds fiin(é),4 € I returned by the low-level, and
computes g;p(P) = >, fii. a lower bound on the
cost of any solution that can be found from node P. The
high-level OPEN prioritizes CT nodes based on their gy,
values. The high-level also maintains a global lower bound
gy = min{g;(P) | P € OPEN} of all nodes in the high-
level OPEN list, which is a lower bound on the optimal
solution cost g*. In addition to OPEN, ECBS maintains
another priority queue FOCAL at its high-level to contain
nodes {P € OPEN | ¢;(P) < w - gip}. The node for
expansion is selected from FOCAL based on h., the number
of vertex and edge conflicts among all agents’ paths in that
CT node. Since g;;, < g*, any node P in FOCAL satisfies
9(P) < wgyy, < wg*, and ECBS is thus guaranteed to return
a solution cost no more than wg*.

B. High-Level of TC-CBS-TF

TC-CBS-TF introduces three new techniques into TC-
CBS-T: (i) the focal search from ECBS, (ii) e-dominance
(defined later) for solution filtering, and (iii) a new method
to determine a flexible sub-optimality factor for the focal
search, Intuitively, with (i), TC-CBS-TF tends to select CT
nodes with fewer conflicts for expansion so as to quickly
identify bounded sub-optimal solutions, which can then be
used to filter nodes. The use of (ii) allows early pruning of
more nodes than the regular dominance, while maintaining
bounded sub-optimality of the final solution set returned.
Finally, the flexible factor method allows focal search to
intelligently distribute the bounds to the agents based on the
team information and speeds up the search.

The algorithm is detailed in Alg. 1 with the differences
marked in brown, supported by the helper function in Alg. 2.
TC-CBS-TF employs two key parameters: the factor w
for focal search and the e-dominance. We discuss their
relationship to « in the next section. For a CT node P,
let g»(P) denote the lower bound cost vector computed
based on the f!,, of each agent i € I returned by the
low-level search. Nodes in OPEN are prioritized based on
their transformed lower bound cost vector Gy, and a node
P € OPEN is eligible to enter FOCAL if there exists at least
a node Q € OPEN such that gy ;,(P) < (14 w) - §r.(Q).
In FOCAL, nodes are prioritized according to h.(FPy), the
number of conflicts in the path stored in Pj.

TC-CBS-TF also introduces e-dominance (Lines 8, 25 in
Alg. 1) for solution filtering. For two vectors ¢ and ga, g1
e-dominates g5 if g1, < (1 +€) - ga,m, € > 0, for every
component m = 1,2--- M in the vectors. The e-Filter
prunes nodes whose cost vectors are e-dominated by any
existing solution cost vector stored in C.

C. Low-Level of TC-CBS-TF

TC-CBS-TF uses focal search for the low-level planning
(Line 18 in Alg. 1) in a similar way as ECBS.' While

INote that, the low-level of TC-CBS-TF is also single-agent single-
objective planning, which is same as the low-level of ECBS, and is different
from the low-level of MOMAPF [20], [21], which requires solving a multi-
objective single-agent problem [22], [23].

Algorithm 2 GetFlexFactor (i,P,w)
I w' oo )
2: for all hteams T, € T* do ‘
. gothers — Z]ET]CJ;M g(ﬂ_])
90" ZjeTk,j;ﬁi frain (5)

3

4

5 gy = fuoin(i)

6: if g;, = 0 then g;;, + le-6 > Avoid division by zero
7 wj, + Eq. (2)

8 w® < min(w’, wy,)

9: return w'

the factor w in focal search in ECBS is fixed, TC-CBS-
TF seeks to set w adaptively for each low-level call using
the GetFlexFactor (Alg. 2), which is invoked before calling
FocalSearch. For the rest of this section, we present the
method by assuming all teams’ objective functions are min-
sum, and leave min-max as our future work.

Specifically, GetFlexFactor takes as input an agent 4 for
which a factor w? is to be determined, a CT node including
agents’ paths and lower bounds f,;,(7),7 € I, and the sub-
optimality factor w for focal search. Let 7% C T denote the
subset of teams that include agent ¢. For each team T} €
T that includes agent i, a new sub-optimality factor wy,
is computed based on the team’s current cumulative path
cost gothers — ZjeTw#g(wj) (all other agents in team

T}, except 7) and the lower bounds of other agents gl"lfhe” =

ZjeTk ik fmin(4), as well as the lower bound Gy = frnin(4)
of agent 1 itself. The team-based factor wj, is computed as

others

others) -9

w - (g7, + 9% _
9

wj, = 0
Intuitively, w} shows the amount of sub-optimality that agent
1 can leverage given the current paths of other agents in team
T}, without exceeding the overall sub-optimality bound w.
After calculating w,i for each relevant team 7T}, € T°, the
final factor w’ for agent i is the minimum across all teams
w' = ming, e7 w}, which is used in the subsequent focal
search for agent ¢. To summarize, this flexible factor method
ensures that each team’s cost remains bounded by w, while
allowing an agent ¢ with the largest possible sub-optimality
bound w’ given other agents’ paths in the related teams.

D. Properties of TC-CBS-TF

For a TC-MAPF problem instance with Pareto-optimal
set II, and Pareto-optimal front C,, let C’f denote the
transformed Pareto-optimal front, which transforms each
component of each § € C, using Eq. (1). Let II}, C II,
(and C! C cf ) denote the subset of Pareto-optimal set
(and Pareto-optimal front) that can be found by TC-CBS-
T (respectively) for a specific 9.

Theorem 1. TC-CBS-TF finds an a-approximation of 1T,
and C., (as opposed to 11, and C.). When 0 is properly
chosen [4] such that C!, = C,, then as a result, TC-CBS-TF
finds an o-approximation of 1l,. The sub-optimality factor
a for the TC-MAPF problem is related to e-dominance and
Socal search by o = w(1+¢), where w and ¢ are the factors
for focal search and e-dominance respectively.



Team 1 2 3 4 5 6

Team 1 (Makespan) | 18 19 20 21 22 24
Team 2 (Sum) 220 | 213 | 206 | 198 | 191 | 182

TABLE I: Solutions in Scenario I (Motorcade).

The detailed proof relies on the analysis of TC-CBS-T [4]
and CBS [2]. Due to space limit, we only present the main
ideas. First, to understand the bound o = w(1+€), consider
two CT nodes P;, P, with lower bounds g 1,Gip,2, cost
vector g1, go respectively. Consider that P; is a solution node
found by TC-CBS-TF with g; added to the solution set C,
while P, will lead to a Pareto-optimal solution with cost
g« € C. butis filtered by P; using e-dominance. Due to focal
search, we know G» < wgip 2 and g2 < gi. Since g, € C,,
is filtered by g1, we know g1 < (1+€)ga < (1+€)(wgip,2) <
(14 €)wg,. As a result, we have the following lemma.

Lemma 1. If any §. € C., is filtered, TC-CBS-TF must have
Sound a solution with cost § such that § < (14 €)wg, = ag,
with o = w(1l + ¢€).

Second, during the search, TC-CBS-TF terminates only
when OPEN depletes, which means a CT node will either
be filtered by e-dominance or lead to a solution eventually.
Due to Lemma 1, for any filtered node P, TC-CBS-TF must
have already found a solution that “approximates” P with
bound «. Therefore, at termination, the solution set C' found
by TC-CBS-TF is an a-approximation of C?.

IV. EXPERIMENTAL RESULTS

We first evaluate TC-CBS-TF in two scenarios based
on the CARLA simulator [24]. The first scenario (Fig. 2)
simulates an intersection in which a motorcade traverses the
intersection along with other vehicles. Team 1 represents the
motorcade, consisting of agents 1-6. Team 2 includes agents
7-14, representing the other vehicles. The second scenario
(Fig. 3) considers 32 agents for high-density coordination.
The agents are evenly divided into four teams, one from
each direction. In both scenarios, TC-CBS-TF is applied with
w = 1.5 and € = 0.1. Then, we test in grid maps that are
commonly used for MAPF in various settings. The runtime
limit is 300 seconds per instance.

A. Coordination in Traffic Intersections

Compared to the exact approach TC-CBS-T [4] which was
evaluated with at most 8 agents in traffic intersection maps,
our TC-CBS-TF can readily handle up to 32 agents in similar
maps, which shows better scalability. Besides, our TC-CBS-
TF finds relatively fewer solutions in comparison with TC-
CBS-T as reported in [4], which is expected since TC-CBS-
TF only approximate the Pareto-optimal front.

Solution Id 1 2 3 4 5

Team 1 209 207 212 208 210
Team 2 206 210 202 208 204
Team 3 208 204 210 207 206
Team 4 207 209 206 209 211

TABLE II: Solutions in Scenario 3

Agent
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Agent 9,
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Fig. 2: Scenario I with a motorcade (Team 1, agents 1-6)
and other vehicles (Team 2, agents 7-14).
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Fig. 3: Scenario 2 with 32 agents evenly divided in 4 teams.
B. Flexible Factors

We then test the flexible factor method in TC-CBS-TF, and
compare it against TC-CBS-T and TC-CBS-TF without the
flexible factors (“w/o flex” in short) in the traffic intersection
maps. Fig. 4 shows the success rates for varying numbers of
agents under different factors (w = 1.1, 1.2, 1.3, 1.4), with
€ fixed at 0.1. The TC-CBS-TF outperforms the other two
methods, especially for small w = 1.1,1.2. For large w,
TC-CBS-TF has similar performance with and w/o flex. The
main reason is that, for a large w, FOCAL often has a large
size and the algorithm already has many CT nodes to choose
from FOCAL. Then, adjusting the sub-optimality based on
the teams has little benefit.

C. Performance on Different Maps

We then test TC-CBS-TF in the maps “empty-16-16" and
“random-32-32-20” from a dataset for MAPF [1].

1) Success Rate vs. Number of Agents: We first evaluate
success rates with increasing numbers of agents under fixed
factors w = 1.1 and € = 0.1. As shown in Fig. 5, TC-CBS-
TF consistently outperforms both TC-CBS-T and TC-CBS-
TF (w/o flex) on both maps. Notably, on the empty-16-16
map, TC-CBS-TF maintains high success rates even with 32
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Fig. 4: Success rates for varying number of agents with ~ 510
different w from 1.1 to 1.4 in the traffic intersection map.

The flexible factor mechanism obviously improves success
rates when w is small.
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Fig. 5: Success rates comparison in different maps with

Here, we test agents /N ranging from 5 to 50. The factors
are w
varying agent numbers (w = 1.1).

= 1.5 and € = 0.1. As shown in Fig. 7, TC-CBS-
TF achieves obviously better scalability than the existing

TC-CBS-T: The success rates of TC-CBS-T drop below 0.2

agents, whereas others degrade rapidly.

2) Runtime vs. Sub-optimality Factors: We evaluate run-

time under varying sub-optimality factors with 12 agents.
As shown in Fig. 6, the runtime decreases as w increases for
both versions of TC-CBS-TF. The runtime gap between TC-
CBS-TF and its variant w/o flex is obvious when w is small,

indicating that the flexible factor is more effective when the
sub-optimality bounds are narrow.

D. Different Team Setups

Finally, we evaluate TC-CBS-TF under different team
setups on a random 32x32 map. We consider two team
setups: (a) Two teams where all agents belong to both
teams where one team minimizes the sum of individual
costs (min-sum) and the other team minimizes the maximum
arrival time (min-max).”> This setup is to solve MAPF while
simultaneously optimizing min-sum and min-max objectives.

(b) Each agent forms a team and optimizes only its own
arrival time.

2Qur flexible factor method is only tested for the min-sum objective, and
is not applied to the min-max objective in this test.

around 25-30 agents while the success rates of our TC-CBS-
TF drop below 0.2 around 40-45 agents.

V. CONCLUSION AND FUTURE WORK

This paper develops bounded sub-optimal algorithms for
TC-MAPF, which scale better than the existing exact ap-
proach, at the cost of finding a set of bounded sub-optimal
Pareto-optimal solutions that approximate the true Pareto-
optimal set. For future work, one can investigates the flexible
factor methods for min-max objectives or consider TC-
MAPF for agents with non-unit-time actions, which may
better model the agents in traffic intersections [25]-[28]
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