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CP-MILP: Mixed Integer Linear Programming for Multi-Agent

Motion Planning with Linear Dynamics
Zhongqiang Ren1, Allen George Philip2, Shizhe Zhao1, Sivakumar Rathinam2 and Howie Choset3

Abstract—This paper considers a Multi-Agent Motion Plan-
ning (MAMP) problem that seeks collision-free paths for multiple
agents from their respective start to goal locations among static
obstacles, while minimizing the arrival times of the agents with
linear dynamics. Among existing approaches such as graph
search, sampling, and trajectory optimization, mixed integer
programming (MIP) can often find high quality solutions with
optimality guarantees. MIP approaches have been investigated
extensively and many of them build upon a mixed-integer
linear program (MILP) for single-agent, which depends on big-
M constraints, a popular technique to formulate conditional
constraints. We take the view that some big-M constraints there
are unnecessary, and may potentially slow down the computation.
This paper thus proposes a new MILP formulation using a
perspective technique related to the control terms to bypass some
of the big-M constraints, and hence the name Control Perspective
MILP (CP-MILP). We analyze the property of our CP-MILP and
experimental results show CP-MILP sometimes requires up to
near an order of magnitude less runtime to solve to optimality.

Index Terms—Motion and path planning, multi-robot systems,
path planning for multiple mobile robots or agents.

I. INTRODUCTION

MULTI-AGENT Motion Planning (MAMP) seeks
collision-free paths for multiple agents from their re-

spective start to goal locations among static obstacles. This
paper considers agents with linear dynamics while minimizing
the arrival times of the agents. This problem is fundamental
in robotics and arises in logistics and surveillance. MAMP is
challenging to solve to optimality especially when there are
many agents [1], [2].

To address the challenge, a variety of approaches were
proposed such as search, sampling, and optimization. Among
them, mixed-integer programming (MIP) [3]–[7] can often
find high quality paths with solution optimality guarantees
by planning directly in the continuous spaces without relying
on any discretized representation such as graphs or samples.
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Fig. 1. An illustration of Multi-Agent Motion Planning with rectangle agents
and obstacles. Each agent is subject to double integrator dynamics. The
dashed curve shows the collision-free solution trajectories with global solution
optimality guarantees.

MIP for motion planning has been investigated a lot over
the past two decades, and many of them relies on a mixed
integer linear programming (MILP) formulation of a single-
agent path planning problem [3]. This MILP for single-agent
relies on big-M constraints, a popular technique to formulate
conditional constraints, to describe arrival times of the agents,
which has been further extended to handle more sophisticated
problem variants recently [5].

However, we take the view that some of the big-M con-
straints in this MILP [3], [5] are unnecessary, and may
potentially slow down the computation in practice. This paper
proposes a new formulation that avoids some of the big-M
constraints related to the arrival times by redefining a set
of binary variables and using a perspective technique over
the control terms. We name our new formulation Control
Perspective MILP (CP-MILP), and we show that CP-MILP
also ensures solution optimality under a mild assumption that
the goal states of the agents are at equilibrium, i.e., after
reaching the goal states, the robots can stay at their goal states
without any additional control.

We evaluate our CP-MILP against the existing MILP formu-
lations for both single-agent and multi-agent in various maps
with single integrator and double integrator dynamics. Our CP-
MILP is usually faster to solve to optimality, and the runtime
reduction is sometimes up to near an order of magnitude.
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II. RELATED WORK

MIP was used to solve various planning problems such
as planning start-goal paths [3], traveling salesman problems
[7], [8], connectivity maintenance [5]. Of close relevance to
this work, the early work on MILP for MAMP uses big-
M to encode agent-agent collision avoidance constraints [9],
which is also adopted in this work. Subsequent research
further uses big-M constraints to describe arrival times of the
agents [3], which is avoided in this work via the proposed
control perspective technique. Although big-M is convenient
to formulate conditional constraints as linear constraints, it is
known that [4], in practice, big-M constraints can slow down
the computation if M is not properly chosen.

To address the MAMP problem, graph-based methods [10]–
[15] usually discretize the workspace into a graph and the
action space of the agent into a set of motion primitives (i.e.,
short trajectories connecting two states) to iteratively plan
trajectories for the agents from their starts towards their goals.
Although these methods can often find high-quality solutions
within the graph, how to obtain a graph representation to
properly capture the obstacle-free space and the potential
agent-agent interaction remains an open challenge.

Without relying on a graph, sampling-based methods [16]–
[18] iteratively sample from the state space or the action
space of the agents to build a tree that encodes collision-free
trajectories. Sampling-based methods often run fast to return
a first feasible solution and can then asymptotically refine
the solution to optimality as the runtime approaches infinity.
However, the solution quality returned by these approaches
within a finite runtime can be poor without fine tuning the
sampling process, especially when the environment is cluttered
with bottlenecks. Recent literature seeks to use a finite number
of samples while ensuring solution quality guarantees, but is
often limited to small numbers of agents due to the heavy
computational burden [16].

Trajectory optimization can solve similar multi-agent prob-
lems subject to nonlinear dynamics [19]–[23], but often rely
heavily on initialization, and may get trapped into local min-
ima or even converge to infeasible local minima in cluttered
environments. Local collision avoidance strategies iteratively
replan the motion locally around the agents so as to avoid
collision in a reactive and decentralized fashion [24]–[26].
These approaches scale to a large number of robots, but
provide no solution quality guarantees due to the myopic local
planning. Finally, other work seeks to combine different tech-
niques together, such as search and sampling [27], [28], search
and optimization [29], [30] to bring together the benefits of
different classes of methods.

Our recent work also seeks to leverage the notion of
graphs of convex sets (GCS) [31] and mixed-integer conic
programming (MICP) [32] to address the MAMP problem.
These GCS and MICP methods can handle Euclidean distance
objectives that cannot be directly represented by MILP, yet
suffer from limited scalability and often run obviously slower
than MILP-based formulations.

Finally, similarly to other MIP approaches [3], [5], [33],
CP-MILP in this paper can plan in continuous space with-

out discretization, and provide solution optimality guarantees,
while suffering from limited scalability compared to recent
search-based planners [14]. These approaches can possibly be
fused together to combine their advantages in practice.

III. PROBLEM DESCRIPTION

Let the index set Ia = {1, 2, · · · , N} denote a set of N
agents. Each agent i ∈ Ia is subject to linear dynamics xi

t+1 =
Ai

tx
i
t + Bi

tu
i
t, where t ∈ It = {0, 1, · · · , T} is the index

of time steps, xi
t ∈ Xi, ui

t ∈ U i are the state and control
vectors of the agents at time step t, with Xi ⊆ Rmx and
U i ⊆ Rmu denoting the state space and control space, where
mx and mu are positive integers indicating the dimension of
the state space and control space respectively. All agents share
a common workspace W ⊆ R2 with a set of obstacles O =
{o1, o2, · · · , oK} ⊆ W , where each obstacle ok is a convex
polytope. Each agent i ∈ Ia is also a convex polytope, and
let Ri(xi) ⊂ W denote the subset of points that are occupied
by the agent i in the workspace when the agent has state xi.
Let Xi

free denote the set of states that are collision-free with
any obstacles, i.e., Xi

free = {xi|Ri(xi) ∩O = ∅}. The set of
feasible control inputs U i is a convex polytope in Rmu .

Let xi
s, x

i
g ∈ Xi

free denote the starting (or initial)
state and goal state of agent i ∈ Ia. Let xi

0:T =
{xi

s, x
i
1, x

i
2, · · · , xi

T−1, x
i
g} denote a state trajectory of length

T + 1 of agent i ∈ Ia connecting xi
s and xi

g , and let
ui
0:T−1 = {ui

0, u
i
1, · · · , ui

T−1} denote the corresponding con-
trol trajectory of length T . A state trajectory is dynamically
feasible if xi

t+1 = Ai
tx

i
t + Bi

tu
i
t and ui

t ∈ U i for all
adjacent states and the corresponding control. Two agents are
in collision if Ri(xi) ∩ Rj(xj) ̸= ∅. Let |ui

t| denote the L1-
norm of the control vector ui

t.
Given a state trajectory xi and the corresponding control

trajectory ui, let tiarr ∈ It denote the arrival time of the agent,
which is the earliest time step such that the agent arrives at
its goal state xi

g , and the agent stays at xi
g for any time step

thereafter, i.e., xi
t = xi

g ∀ t ≥ tiarr, t ∈ It. The maximum
of all agents’ arrival times is referred to as the makespan of
the agents. Let x = (x1, x2, · · · , xN ), u = (u1, u2, · · · , uN )
denote the joint state trajectory and the joint control trajectory
of all agents. Let J(x, u) denote the cost function of all agents’
trajectories, which is the weighted average of the makespan
and control efforts by factors w1, w2 ≥ 0, w1w2 ̸= 0:

J(x, u) = w1 max
i∈I

tiarr + w2

∑
i∈Ia,t∈It\{T}

|ui
t| (1)

The goal of the multi-agent motion planning (MAMP)
problem considered in this paper is to find a set of collision-
free and dynamically feasible trajectories x, u of all agents
such that the cost function J(x, u) is minimized.

Remark 1. Both our CP-MILP and the existing MILP can be
readily modified to handle other objectives such as the sum of
arrival times, which will be discussed at the end of Sec. IV-D.

IV. METHODS

This section first presents MILP formulations for the single-
agent problem. We then extend these formulations to the multi-
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agent problem, by further considering the agent-agent collision
avoidance constraints.

A. Existing MILP Formulation
In the literature, the single-agent problem can be formulated

as an MILP [3], [5] as follows.1

min
xi
0:T ,ui

0:T−1,b0:T ,hk,m,0:T

w1

∑
t∈It

tbt + w2

∑
t∈It\{T}

|ui
t| (2)

s.t. xi
t+1 = Ai

tx
i
t +Bi

tu
i
t, t ∈ It (3)

xi
t ∈ Xi, ui

t ∈ U i (4)

xi
0 = xi

s (5)

xi
t ≥ xi

g −M(1− bt), xi
t ≤ xi

g +M(1− bt) (6)

aTk,mxi
t ≤ ck,m +M(1− hk,m,t) +M

t∑
j=0

bj ,

∀k ∈ Ik,∀m ∈ Im,∀t ∈ It (7)
Mk∑
m=1

hk,m,t ≥ 1, hk,m,t ∈ {0, 1}, ∀k ∈ Ik,∀t ∈ It (8)∑
t∈It

bt = 1, bt ∈ {0, 1} (9)

The binary variables bt, t ∈ It indicate when the agent
arrives at its goal. Constraint (9) enforces that bt = 1 for
only one time step t, which is the arrival time of the agent.
The term

∑
t∈It

tbt is equal to t if the arrival time is t, and is
zero otherwise. Constraints (6) uses the big-M technique such
that, with a large enough real number M , the constraints are
inactive (i.e., always holds) when bt = 0, and is active when
bt = 1. When the constraints are active, they enforce the agent
to arrive at the goal state as bt = 1.2

Constraints (7) enforce agent-obstacle collision avoidance
(Fig. 2 (a)). Let Ik = {1, 2, · · · ,K} denote an index set
representing the obstacles, and there are K convex polytopic
obstacles in total. For each obstacle ok ∈ O, k ∈ Ik (the
k-th obstacle), consider its Minkowski difference with the
polytope representing the agent. The resulting convex polytope
can be represented as the intersection of Mk half-spaces,
{x|aTk,mx ≤ ck,m}, where m ranges from 1 to Mk.3 Let hk,m,t

denote a set of binary variables, indicating whether the agent
at time t is on the outer side of the hyper-plane (hk,m,t = 1),
or on the inner side (hk,m,t = 0) with respect to the k-th
obstacle. Constraint (8) and the big-M term M(1 − hk,m,t)
in Constraint (7) require the agent to be on at least one side
of the obstacle so that the agent is collision-free. The second
big-M term M

∑t
j=0 bj in Constraint (7) relaxes (turns off)

the constraint if the agent has reached the goal.

1Literature [5] summarizes the approach in [3] and is thus recommended as
a reference. The paper [5] also considers the connectivity constraints among
multi-agent, which is not the focus of this work.

2In this paper, all inequalities on vectors should be interpreted component-
wise. When taking the sum of a vector and a scalar, the scalar is added to
each component in that vector. E.g. on the right hand side of Eq. (6), xi

g is a
vector while M(1−bt) is a scalar. Their sum is a vector that adds M(1−bt)
to each component of xi

g .
3Here, aTk,m is a row vector of the same length mx as the state vector

xi
t, and in aTk,m, only the components, which correspond to the position

components in xi
t, are non-zero.

Fig. 2. (a) An illustration of the agent-obstacle collision avoidance constraints.
(b) Minkowski difference with the polytope representing the agent.

B. CP-MILP for Single-Agent

Although big-M can help formulate conditional constraints
easily, in practice, it can slow down the computation, and the
selection of M often requires fine turning. Our CP-MILP seeks
to avoid some of the big-M terms in Constraints (6) and (7)
that are related to bt.

We introduce a new set of binary variables βt, t ∈ It to
represent the arrival time, instead of using bt. Intuitively, βt =
1 if the agent has not yet reached the goal (i.e., the robot is
still active at time t), and βt = 0 is the agent has reached the
goal at an earlier time step (i.e., the robot is inactive at time
t). Thus, as t ∈ It increases, βt can only drop from one to
zero, and we have the following constraint.

βt − βt+1 ≥ 0, ∀t ∈ It\{T}, βt ∈ {0, 1}, ∀t ∈ It (10)

Next, let vit = ui
tβt denote the new control variable, which is

the product of the control ui
t and the binary variable βt. The

term ui
tβt is bilinear and will be avoided in our formulation.

We will remove ui
t from the decision variables and use vit as

the decision variables instead. With the new control variable
vit, we can rewrite the dynamic constraint as follows.

xi
t+1 = Ai

tx
i
t +Bi

tv
i
t, t ∈ It

xi
t ∈ Xi, (vit, βt) ∈ V i (11)

Here, V i = {(vit, λ)|λ ≥ 0, vit ∈ λU i} is the perspective of
U i. Intuitively, this constraint enforces that, when βt = 0,
the robot has reached the goal and the control must be zero,
and when βt = 1, the robot has not reached the goal yet,
and vit is same as the control ui

t. We refer to such proposed
reformulation based on vit as the control perspective technique.
The use of Constraints (11) relies on an assumption that
the goal state of the robot must be an equilibrium, which
is elaborated later in Sec. IV-C. Once the robot reaches its
goal xi

g , βt and ui
t are both zero. As a result, we only need

to impose constraint xi
T = xi

g on the last time step, and
Constraint (6) becomes:

xi
T = xi

g (12)

We observe that the relaxation of the obstacle avoidance
constraint after the agent reaches the goal is unnecessary, since
the robot’s goal state must be collision-free. Otherwise (the
goal state is not collision-free), there is no feasible solution.
We thus rewrite Constraint (7) as follows.

aTk,mxi
t ≤ ck,m +M(1− hk,m,t) (13)
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Finally, the objective function in CP-MILP is reformulated
based on βt, v

i
t. We summarize the entire program for CP-

MILP as follows.

min
xi
0:T ,vi

0:T−1,β0:T ,hk,m,0:T

w1

∑
t∈It

βt + w2

∑
t∈It\{T}

|vit| (14)

s.t. (10), (11), (5), (12), (13), (8) (15)

C. Analysis

This section shows the correctness of our CP-MILP under
the following equilibrium goal assumption. We refer to the
existing MILP in Sec. IV-A simply as MILP. Let J, J ′ denote
the objective functions in Eq. (2) and Eq. (14) respectively.

Assumption 1. The goal state xi
g is an equilibrium for the

dynamics, i.e., xi
g = Atx

i
g,∀t ∈ It.

Theorem 1. When Assumption 1 holds, for any feasible
solution to MILP, there is a corresponding feasible solution
to CP-MILP and vice versa, and the two solutions have the
same objective function values in MILP and CP-MILP.

Proof. For a feasible solution S = (xi
t, u

i
t, bt, hk,m,t) to MILP,

a corresponding feasible solution S′ = (xi
t, v

i
t, βt, hk,m,t) can

be constructed for CP-MILP by first copying xi
t, hk,m,t as is.

Then, let k denote the arrival time step, i.e., bk = 1 is the
only bt, t ∈ It variable that is equal to one, and build βt

by setting βt = 1, t ≤ k and βt = 0, t > k. Additionally,
due to Assumption 1 and that the arrival time is k, we know
ui
t = 0, t > k, and a corresponding set of vit can be built by

copying ui
t. The resulting solution S′ = (xi

t, v
i
t, βt, hk,m,t) is a

feasible solution to CP-MILP. Similarly, a feasible solution to
MILP can be constructed for any given feasible solution to CP-
MILP by copying xi

t, hk,m,t as is, and constructing ui
t, bt based

on vit, βt. Finally, by construction of the feasible solutions
S, S′ to MILP and CP-MILP and the form of the objective
function J, J ′, we know J(S) = J ′(S′).

Theorem 2. When Assumption 1 holds, MILP and CP-MILP
have the same optimum, if one exists.

Proof. We prove it by contradiction. Let S1 denote an optimal
solution to MILP with objective function value J(S1), and
let S1′ denote the corresponding solution to CP-MILP with
objective function value J ′(S1′). By Theorem 1, we know
J(S1) = J ′(S1′). Assume that S1′ is not an optimal solution
to CP-MILP. Then, there must be another feasible solution
S2′ to CP-MILP whose objective function value J ′(S2′) is
strictly smaller than J ′(S1′), i.e., J ′(S2′) < J ′(S1′). With
Theorem 1, a corresponding feasible solution S2 to MILP can
be built out of S2′ with objective function value J(S2) =
J ′(S2′) < J ′(S1′) = J(S1), which contradicts that S1 is an
optimal solution to MILP.

D. CP-MILP for Multi-Agent

Both the existing MILP and our CP-MILP for the single-
agent problem can be readily extended to multi-agent by
introducing the additional agent-agent collision avoidance con-
straints [9]. We write down the entire program as follows.

min
xi
t,v

i
t,βt,hi

k,m,t,i∈Ia

∑
t∈It\{T}

(w1βt +
∑
i∈Ia

w2|vit|) (16)

s.t. xi
t+1 = Ai

tx
i
t +Bi

tv
i
t,

xi
t ∈ Xi, (vit, βt) ∈ V i,∀t ∈ It,∀i ∈ Ia (17)

xi
0 = xi

s, x
i
T = xi

g,∀i ∈ Ia (18)

aTk,mxi
t ≤ ck,m +M(1− hi

k,m,t),

∀k ∈ Ik,∀m ∈ Im,∀t ∈ It,∀i ∈ Ia (19)
Mk∑
m=1

hi
k,m,t ≥ 1, hk,m,t ∈ {0, 1},

∀k ∈ Ik,∀t ∈ It,∀i ∈ Ia (20)
βt − βt+1 ≥ 0, ∀t ∈ It\{T},

βt ∈ {0, 1}, ∀t ∈ It,∀i ∈ Ia (21)

αT
i,j,m(xi

t − xj
t ) ≤ ξi,j,m +M(1− hi,j

t,m)

∀t ∈ It,∀i, j ∈ Ia, i ̸= j (22)∑
m∈Im

hi,j
t,m ≥ 1,∀t ∈ It,∀i, j ∈ Ia, i ̸= j (23)

Objective (16) and Constraints (17-21) are similar as afore-
mentioned. Here, βt describes the maximum arrival times of
all agents, and the objective function seeks to minimize the
sum of all agents’ control efforts and the makespan. The binary
variables hi

k,m,t related to collision avoidance among static
obstacles are now defined for each agent.

In addition, Constraint (22) describes the inter-agent col-
lision avoidance constraint, which is same as in [9]. As
shown in Fig. 2 (b), for each pair of convex polytopic agents
i, j ∈ Ia, consider their Minkowski difference, which can be
described by a polytope enclosed by a set of M hyper-planes
{x|αT

i,j,mx ≤ ξi,j,m}, where the index m = 1, 2, · · · ,Mi,j

indicates the index of the hyper-planes, with Mi,j being the
total number of hyper-planes. Let hi,j

k,m denote a set of binary
variables, indicating whether the center of agent j is on the
outer side of the hyper-plane hi,j

t,m = 1, or on the inner side
(hi,j

t,m = 0). Constraint (23) ensures agent j must be on at least
one side of the polytope {x|αT

i,j,mx ≤ ξi,j,m}, so that agents
i, j are not in collision with each other.

Remark 2. This formulation minimizes the makespan of
the agents. It can be modified to minimize the sum of
arrival times by defining βi

t , t ∈ It for each agent
i ∈ Ia as opposed to one common set of βt, t ∈ It
for all agents. Specifically, the objective function becomes
minxi

t,u
i
t,βt,hi

k,m,t,i∈Ia

∑
i∈Ia

∑
t∈It\{T}(w1β

i
t + w2|vit|). In

addition, add the superscript i in βt at all places in the
formulation. Then, the constraint (vit, β

i
t) ∈ V i,∀t ∈ It in

(17) ensures that only after an agent has reached its goal at
some time step t ∈ It, the control of that agent becomes zero,
and other agents j ̸= i are unaffected by βi

t .

V. EXPERIMENTAL RESULTS

We evaluate our new CP-MILP against the existing MILP
(i.e., the baseline) for both single-agent and multi-agent in
various maps with single integrator and double integrator
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Fig. 3. Results for single-agent tests. The agent has single integrator dynamics
in (a-c), and double integrator dynamics in (d-f). The numbers above each
figure show: the runtime of CP-MILP/ the runtime of the baseline = the
runtime ratio.

Fig. 4. Results for multi-agent tests with single integrator dynamics.

dynamics on a Macbook with M2 Pro CPU and 16GB RAM.
All agents and obstacles are implemented as rectangles in our
tests. The start and goal states of the agents are randomly
sampled from the workspace with zero velocity terms for the
double integrator, which satisfies the assumption that the goal
states are equilibrium. We use Gurobi 11.0.3 as the underlying
solver for all formulations.

A. Single-Agent Planning

We first plan for a single agent using the instances as shown
in Fig. 3 with single integrator and double integrator dynamics
in 2D environments with time horizon T = 100 (i.e., 100
time steps). Both formulations are solved to optimality and
the solution costs always match each other. The numbers in
Fig. 3 show the runtime ratio of our CP-MILP against the
baseline, and our CP-MILP is always faster than the baseline
in these tests. In Fig. 3 (a), our CP-MILP takes only around
a quarter of the runtime needed by the baseline.

B. Multi-Agent Planning

We then test multi-agent planning and begin with single
integrator dynamics with horizon T = 100.

Fig. 5. Results for multi-agent tests with double integrator dynamics with
5% optimality gap (a) and 10% optimality gap (b).

Fig. 6. (a) Results for multi-agent tests with varying planning time steps T .
(b) Results for multi-agent tests with varying optimality gaps.

1) Single Integrator Dynamics: The test instance is shown
in Fig. 4 (a). We vary the number of agents N from 2 to 13.
As shown in Fig. 4 (b), our CP-MILP needs shorter runtime to
solve to optimality than the baselines. Note that, the vertical
axis is in log scale, and when N = 10, our CP-MILP takes
near an order of magnitude less runtime than the baseline. We
set a runtime limit of 5 minutes. The baseline times out after
N > 10 and is thus omitted, while our CP-MILP can handle
up to 13 agents.

2) Double Integrator Dynamics: We then switch to double
integrator dynamics and the test instance is shown in Fig. 1.
We vary the number of agents N from 2 to 8. Due to the
difficulty of the problem, both formulations take long time
to solve to optimality, we therefore set an optimality gap of
5% and 10% for the Gurobi solver in this test when solving
both formulations. We will discuss the influence of varying
optimality gaps in the following sections. As shown in Fig. 5,
when the gap parameter is 5%, there is no obvious advantage
of one formulation against the other, and sometimes (e.g. N =
3) our CP-MILP takes even more runtime than the baseline.
When the gap parameter is 10%, our CP-MILP often runs
faster, sometimes up to half an order of magnitude, than the
baseline. However, there is still a case (N = 6 in Fig. 5(b))
where our approach is slower than the baseline.

The advantage of CP-MILP over the baseline is less obvious
for double integrator than single integrator. A possible reason
is that the double integrator has more state dimension than
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Fig. 7. Visualization of trajectories and their costs for different optimality gaps. Slight difference can be observed for the orange and the green agents.

the single integrator, which leads to more decision variables
and more constraints, corresponding to a larger and more
complicated feasible domain. As a result, the big M constraints
bypassed by CP-MILP become less significant than those for
a single integrator.

C. Influence of Parameters

This section evaluates the influence of the parameters on
the formulations. We first test with different planning time
horizons and then different optimality gaps.

1) Planning Horizon: Although both formulations are able
to minimize the arrival times by optimizing over the binary
variables bt or βt, the choice of planning horizon, i.e., the
number of time steps T , may influence the runtime in practice.
We fix the number of agents N = 6, use single integrator
dynamics in this test, and vary the time steps T . As shown
in Fig. 6(a), where the vertical axis is on a linear scale, as T
increases, both formulations have more binary variables bt, βt

and take longer runtime to solve to optimality.
2) Optimality Gaps: When using the Gurobi solver, one

can set the gap parameter between the upper bound and the
lower bound at termination, to let the solver terminate earlier,
as long as a bounded sub-optimal solution is found. We tested
different gap parameters with both formulations using a double
integrator with N = 5 agents. As shown in Fig. 6(b), where the
vertical axis is in linear scale, increasing the gap can obviously
speed up the solution process of both formulations. As the gap
varies, neither of the formulations consistently outperforms the
other, which is aligned with the results in Fig. 5 for the double
integrator dynamics.

Fig. 7 shows the trajectories of the agents and the solution
costs at termination for different gaps. By tightening the opti-
mality gap, the runtime increases a lot while the solution costs
decrease slowly. Slight difference can be observed along the
trajectories of the orange and green agents among those sub-
figures. It indicates that, in practice, solving the formulations
with a moderate gap parameter should yield good enough
solution trajectories within relatively short runtime.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new MILP formulation called CP-
MILP for single-agent and multi-agent motion planning prob-
lems that minimizes control efforts and arrival times. CP-
MILP builds upon an existing MILP formulation, redefines

a set of binary variables, and uses a perspective technique
over the control terms to avoid some of the big-M terms.
The paper shows that the proposed CP-MILP has the same
optimum, if one exists, as the existing MILP as long as the
goal states of all the agents are at equilibrium. As verified by
the experimental results, CP-MILP often takes less runtime
to solve to optimality, especially for systems with simple
dynamics (such as single integrator). For systems with more
complicated dynamics, the runtime benefits become less obvi-
ous. For future work, one can consider further extending CP-
MILP with more sophisticated constraints such as connectivity
maintenance [5], or combining the proposed CP-MILP with
other MIP techniques to avoid inter-state collision [33], which
is ignored in this work.
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