
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 1

Heuristic Search for Path Finding with Refuelling
Shizhe Zhao1∗, Anushtup Nandy2∗, Howie Choset2, Sivakumar Rathinam3 and Zhongqiang Ren4

Abstract—This paper considers a generalization of the Path
Finding (PF) problem with refuelling constraints referred to as
the Gas Station Problem (GSP). Similar to PF, given a graph
where vertices are gas stations with known fuel prices, and edge
costs are the gas consumption between the two vertices, GSP
seeks a minimum-cost path from the start to the goal vertex
for a robot with a limited gas tank and a limited number
of refuelling stops. While GSP is polynomial-time solvable, it
remains a challenge to quickly compute an optimal solution
in practice since it requires simultaneously determine the path,
where to make the stops, and the amount to refuel at each stop.
This paper develops a heuristic search algorithm called Refuel A∗

(RF-A∗) that iteratively constructs partial solution paths from the
start to the goal guided by a heuristic while leveraging dominance
rules for pruning during planning. RF-A∗ is guaranteed to find
an optimal solution and often runs 2 to 8 times faster than the
existing approaches in large city maps with several hundreds of
gas stations.

Index Terms—Motion and Path Planning, Scheduling and
Coordination, Robotics in Under-Resourced Settings

I. INTRODUCTION

G IVEN a graph with non-negative edge costs, the Path
Finding problem seeks a minimum-cost path from the

given start vertex to a goal vertex. This paper considers a
Gas Station Problem (GSP), where the vertices represent gas
stations with known fuel prices, and the edge costs indicate
the gas consumption when moving between vertices. The
fuel prices can be different at vertices and are fixed over
time at each vertex. GSP seeks a start-goal path subject to
a limited gas tank and a limited number of refuelling stops
while minimizing the total fuel cost along the path (Fig. 1).

GSP was studied [8], [11], [17], [26], and arises in ap-
plications such as path finding for electric vehicles between
cities [2], [3], [18] and package delivery using an unmanned
vehicle [10], [12], where a robot needs to move over long

Manuscript received: October 15, 2024; Revised January 4, 2025; Accepted
January 31, 2025

This paper was recommended for publication by Editor Bera Aniket upon
evaluation of the Associate Editor and Reviewers’ comments.

This work was supported by the National Science Foundation under Grant
Nos. 2120219 and 2120529. The authors at Shanghai Jiao Tong University
are supported by the Natural Science Foundation of China under Grant No.
62403313. (Corresponding author: Zhongqiang Ren.)

1 Shizhe Zhao is with UM-SJTU Joint Institute, Shanghai Jiao Tong
University, China. Email: shizhe.zhao@sjtu.edu.cn

2 Anushtup Nandy and Howie Choset are at Carnegie Mellon Univer-
sity, 5000 Forbes Ave., Pittsburgh, PA 15213, USA. Emails: {anandy,
choset}@andrew.cmu.edu

3Sivakumar Rathinam is with the Department of Mechanical Engineering
and the Department of Computer Science and Engineering, Texas A&M Uni-
versity, College Station, TX 77843-3123. Email: srathinam@tamu.edu

4Zhongqiang Ren is with UM-SJTU Joint Institute and the Depart-
ment of Automation, Shanghai Jiao Tong University, China. Email:
zhongqiang.ren@sjtu.edu.cn

* Equal contribution and co-first authors.
Digital Object Identifier (DOI): see top of this page.

Fig. 1: An illustrative example of GSP. This graph consists of
six vertices representing gas stations, each associated with a gas
price, and each edge with its fuel expenditure. The objective is to
find a minimum-cost path from start to goal, assuming the tank
capacity is 5 and the refuelling stop limit is 3. The figure shows the
minimum-cost path (ACEF), using green arrows, and the minimum
fuel consumption path, (ABDF) using red arrows. Note that the
minimum fuel consumption path does not incur the lowest fuel cost.
Along the optimal solution ACEF, the cost of refuelling at each vertex
is: $10 at A, $14 at C, $18 at E.

distances when refuelling becomes necessary. While GSP is
polynomial time solvable [8], [11], [17], it remains a challenge
to quickly compute an optimal solution in practice since the
robot needs to simultaneously determine the path, where to
make the stops, and the amount of refuelling at each stop,
possibly in real-time with limited on-board computation.

This paper focuses on exact algorithms that can solve GSP
to optimality. In [11], a dynamic programming (DP) approach
is developed to solve GSP to optimality, which has been
recently further improved in terms of its theoretic runtime
complexity [17]. This approach identifies a principle regarding
the amount of refuelling the robot should take at each stop
along an optimal path. This principle allows the decomposition
of GSP into a finite number of sub-problems, and DP can be
leveraged to find an optimal solution by iteratively solving all
these sub-problems.

To expedite computation, this paper develops a new heuris-
tic search algorithm called RF-A∗ (Refuelling A*), which
iteratively constructs partial solution paths from the start vertex
to the goal guided by a heuristic function. RF-A∗ gains
computational benefits over DP in the following aspects. First,
RF-A∗ never explicitly explores all sub-problems as DP does
and only explores the sub-problems that are needed for the
search. Second, RF-A∗ uses a heuristic to guide the search,
reducing the number of sub-problems to be explored before
an optimal solution is found. Third, taking advantage of our
prior work in multi-objective search [21], [24], [25], RF-A∗

introduces a dominance rule to prune partial solutions during

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 2

the search, which saves computation. RF-A∗ is guaranteed to
find an optimal solution.

We compare RF-A∗ against DP [11] and a method based
on mixed-integer programming (MIP) [14] in real-world city
maps of various sizes from the OpenStreetMap dataset. Our
results show that RF-A∗ is orders of magnitude faster than
the MIP, and is often 2 to 8 times faster than DP in the city
maps with hundreds of gas stations. In addition, RF-A∗ is up
to 64 times faster than DP, when the heuristic can be pre-
computed and cached for planning. These results demonstrate
the scalability of RF-A∗, enabling it to plan for a robot with
a limited tank in large urban areas.

II. RELATED WORK

Path planning with refueling constraints (GSP) involves
determining a path and a refueling schedule simultaneously.
Dynamic programming methods were introduced by [11], [17]
for the GSP either from a given start to a goal or for all-pair
vertices in the graph. Besides planning start-goal paths, an-
other related problem generalizes travelling salesman problem
and vehicle routing problem with refuelling constraints [1],
[9], [11], [14], [28]. These problems seek a tour that visits
multiple vertices subject to a limited fuel tank. This paper
only considers finding a start-goal path.

Recently, due to the prevalence of electric vehicles (EV) and
unmanned aerial vehicles (UAV), several variants of GSP were
proposed to address fuel constraints using various methods.
Mathematical programming models were proposed by [19],
which generalized the refuelling cost in EV applications. [13]
addresses the refuelling constraints for an UAV cruise system
under an online setting using a greedy approach. [5] considers
the fairness of resource utilization and employs GSP as a cost
function. [27] considers the uncertainty of the waiting time for
refuelling and proposed a policy that can be solved by dynamic
programming. Other methods also appear in literature to deal
with refuelling constraints, such as constraint programming
[20] and learning [13], [16].

Among these methods, both mathematical programming
and dynamic programming can guarantee solution optimality
for GSP. Mathematical programming models the GSP as a
mixed integer program and then invokes an off-the-shelf solver
to handle the problem [19]. Dynamic programming (DP)
decomposes the GSP to a finite number of sub-problems, then
exploits the relation between these sub-problems to find the
optimal solution by solving all sub-problems iteratively [11].
However, DP often performs redundant work. This paper aims
to reduce the redundancy of DP in GSP by heuristic search.

III. PROBLEM STATEMENT

Let G = (V,E) denote a directed graph, where each vertex
v ∈ V represents a gas station, and each edge (u, v) ∈ E
denotes an action that transits the robot from vertex u to
v. Each edge (u, v) ∈ E is associated with a non-negative
real value d(u, v) ∈ R+, called edge cost, which represents
the amount of fuel needed to traverse the edge from u to
v. The robot has a fuel capacity qmax ∈ R+ representing
the maximum amount of fuel it can store in its tank. Let

c : V → [0,∞] denote the refuelling price per unit of fuel
at each vertex in v ∈ V .1

Let a path π(v1, vℓ) = (v1, v2, . . . , vℓ) be an ordered list
of vertices in G such that every pair of adjacent vertices in
π(v1, vℓ) is connected by an edge in G, i.e., (vi, vi+1) ∈
E, i = 1, 2, . . . , ℓ−1. Let g(π) denote total fuel cost along the
path; specifically, let a non-negative real number a(v) ∈ R+

denote the amount of refuelling taken by the robot at vertex
v, then g(π) =

∑
i=1,2,...,ℓ a(vk)c(vi).

In practice, the robot often has to stop to refuel, which slows
down the entire path execution time. Therefore, let kmax ∈
Z+, kmax > 1 denote the maximum number of refuelling stops
the robot is allowed to make along its path.

Definition 1 (Gas Station Problem (GSP) [11]) Given a
pair of start and goal vertex vo, vg ∈ V , the robot has zero
amount of fuel at vo and must refuel to travel. GSP seeks a
path π from vo to vg and the amount of refueling a(v), v ∈ π
along the path, such that g(π) is minimized, while the number
of refuelling stops along π is no larger than kmax, and the
amount of fuel in the tank is not greater than qmax after each
refuelling.

Remark 1 In the literature [11], [14], the graph is often
assumed to be a fully connected graph. For a graph G that is
not fully connected, one can convert it to a fully connected
graph G′ by finding a minimum edge cost path π(u, v)
(without any limit on the number of refuel stops) for each pair
of vertices (u, v) in G and using an edge e′ ∈ G′ to indicate
path π(u, v). Although such a conversion is straightforward,
it may require extra runtime when deploying the algorithm on
a robot. For this reason, this paper does not assume the graph
G is fully connected and presents GSP on general graphs.

IV. METHOD

This section introduces RF-A∗, a heuristic search approach
to find an optimal solution for GSP. It initiates at start vertex
vo and systematically explores potential paths from vo towards
goal vertex vg while minimizing the overall fuel cost. The
heuristics help estimate the remaining cost to the goal and
guide the search. RF-A∗ also considers the fuel tank limit
qmax and the refuelling stop limit kmax, by comparing two
paths that reach the same vertex using multiple criteria. During
the search, RF-A∗ maintains an open set of candidate paths
that are to be expanded, similar to A∗. It continues searching
until finding an optimal path satisfying the constraints. A toy
example of the search process is provided in Fig. 2.

A. Notations and Background

1) Basic Concepts: In GSP, there can be multiple paths
from vo to a vertex v, and to differentiate them, we use the
notion of labels. Intuitively, a label l = (v, g, q, k) consists
of a vertex v ∈ V , a non-negative real number g ∈ R+

that represents the cost-to-come from vo to v, a non-negative
real number q ∈ R+ that represents the amount of fuel
remaining at v before refuelling, and an integer 0 ≤ k < kmax

1For vertices v in G where the robot cannot refuel, let c(v) = ∞.

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 3

indicates the number of refuelling stops before v. We use
v(l), g(l), q(l), k(l) to denote the respective component of a
label. To compare labels, we use the following notion of label
dominance.

Definition 2 Given two labels l, l′ with v(l) = v(l′), label l
dominates l′ if the following three inequalities hold: (i) g(l) ≤
g(l′) , (ii) q(l) ≥ q(l′) and (iii) k(l) ≤ k(l′).

If l dominates l′, then l′ can be discarded during the search,
since for any path from vo via l′ to vg , there must be a
corresponding path from vo via l to vg with the same or smaller
cost. Otherwise, both l and l′ are non-dominated by each other.
For a vertex v ∈ V , let F(v) denote a set of labels that reach v
and are non-dominated by each other. F(v) is also called the
frontier set at v. Additionally, the procedure CheckForPrune(l)
compares a label l against all existing labels in F(v(l)) to
check if l is dominated and should be discarded.

Similarly to A∗, let h(l) denote the h-value of label l that
estimates the cost-to-go from v to vg . We further explain the
heuristic in Sec. IV-B2. Let f(l) = g(l) + h(l) be the f -
value of label l. Let OPEN denote a priority queue of labels,
where labels are prioritized based on their f -values from the
minimum to the maximum.

A major difficulty in GSP is determining the amount of
refuelling at each vertex during the search, a continuous
variable that can take any value in [0, qmax]. To handle this
difficulty, we borrow the following lemma from [11], which
provides an optimal strategy for refuelling at any vertex.

Lemma 1 (Optimal Refuelling Strategy) Given refuelling
stops v1, . . . , vn along an optimal path using at most kmax

stops in a complete graph. At vg−1, which is the stop right
before the goal vertex vg , refuel enough to reach vg with an
empty tank. Then, an optimal strategy to decide how much to
refuel at each stop for any n < g − 1 :

• if c(vn) < c(vn+1), then fill up entirely at vn.
• if c(vn) ≥ c(vn+1), then fill up enough to reach vn+1.

The intuition behind Lemma 1 is that the robot either fills
up the tank if the next stop has a higher fuel price, or fills
just enough amount of fuel to reach the next stop if the next
stop has a lower price. By doing so, the robot minimizes its
accumulative fuel cost. A detailed proof is given in [11]. Note
that Lemma 1 assumes the graph is complete. To adapt it to
a general graph, we need to identify all possible transitions
from one vertex to any other vertices in G (going through one
or multiple edges) without refuelling, which will be described
in ComputeReachableSets in the next section.

B. Refuel A∗ Algorithm

RF-A∗ (Alg. 1) takes a graph G, tank capacity qmax, vo,
vg , and max refuelling stops kmax as the inputs. It begins by
calling Alg. 2 ComputeReachableSets (IV-B3) to compute the
set of all vertices that the robot can travel to from any vertex u
given a full tank. Subsequently, to compute the heuristic which
gives the amount of fuel needed to reach vg from any other
vertex, it runs an exhaustive backward Dijkstra search from
vg . We present the heuristic computation in Sec. IV-B2. After

Algorithm 1 RF-A∗

1: ComputeReachableSets()
2: ComputeHeuristic(vg)
3: lo ← (vo, g = 0, q = 0, k = 0), f(lo)← 0 + h(lo)
4: parent(lo)← NULL
5: Add lo to OPEN
6: F(v)← ∅,∀v ∈ V
7: while OPEN ̸= ∅ do
8: pop l = (v, g, q, k) from OPEN
9: if CheckForPrune (l,F(v(l))) then

10: continue
11: add l to F(v(l))
12: if v(l) = vg then
13: continue
14: if k = kmax then
15: continue
16: for all v′ ∈ GetReachableSet(v(l)) do
17: if c(v′) > c(v) then
18: g′ ← g(l) + (qmax − q(l))c(v)
19: q′ ← qmax − d(v, v′)
20: k′ ← k + 1
21: else
22: if d(v′, v) ≥ q(l) then
23: g′ ← g(l) + (d(v′, v)− q(l))c(v)
24: q′ ← 0
25: k′ ← k + 1
26: else
27: continue ▷ No need to refuel
28: l′ ← (v′, g′, q′, k′)
29: g(l′)← g′

30: if CheckForPrune (l′,F(v(l))) then
31: continue
32: f(l′)← g(l′) + h(v(l′))
33: parent(l′)← l
34: add l′ to OPEN
35: return Reconstruct(vd)

Algorithm 2 ComputeReachableSets

1: Reach(v)← ∅,∀v ∈ V
2: for v ∈ V do
3: d∗(u)←∞, ∀u ∈ V
4: d∗(v)← 0
5: Add v to OPENv

6: while OPENv ̸= ∅ do
7: pop u from OPENv

8: if d∗(u) > qmax then
9: continue

10: else
11: add u to Reach(v)

12: for u′ ∈ GetSucc(u) do
13: if u′ ∈ Reach(v) then
14: continue
15: if d∗(u′) > d∗(u) + d(u, u′) then
16: d∗(u′)← d∗(u) + d(u, u′)
17: add u′ to OPENv

the Dijkstra, RF-A∗ initiates the label lo = (vo, g = 0, q =
0, k = 0) at vertex vo with the f -value, f(lo) = h(lo), and
inserts it into OPEN. The frontier set F(v) at each v ∈ V is
initialized as an empty set ∅.

During the search (Lines 8-34), in each iteration, the label
with the lowest f-value is popped from OPEN for further
processing. This label is checked for dominance against ex-
isting labels in F(v(l)) using CheckForPrune. This procedure

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 4

Algorithm 3 CheckForPrune(l,F(v(l)))

1: INPUT: A label l and F(v(l)), the frontier set at vertex v(l).
2: for all l′ ∈ F(v(l)) do
3: if g(l′) ≤ g(l) and q(l′) ≥ q(l) and k(l′) ≤ k(l) then
4: return true ▷ l should be pruned.
5: return false ▷ l should not be pruned.

employs Def. 2 to compare the g, q and k values of the popped
label against other labels in F(v(l)).

If the selected label is non-dominated (and thus unpruned),
it is added to the frontier set. Subsequently, the algorithm
checks if the vertex of the label v(l) is vg , which means that
the label l represents a solution with the minimum cost, and
the search terminates. It is also confirmed whether the kmax

stops limit has been reached. In cases where v(l) ̸= vg and
k′ ̸= kmax, the label is expanded, which generates new labels
for all reachable vertices from v(l) in G. This involves a loop
that iterates each reachable vertex and creates a new label l′

with new g′, q′, k′. The amount of refuelling is determined
using Lemma 1, and the corresponding accumulative fuel
cost g′ is computed. Note that l′ is generated only if a
refuelling stop at v(l) is required. v′ at Line 27 can thus be
skipped. Finally, the algorithm uses CheckForPrune to check
for dominance. If l′ is not pruned, l′ is added to OPEN for
future expansion.

1) ComputeReachableSets: This procedure aims to find
all successor vertices that RF-A∗ needs to consider when
expanding a label. To achieve this, it identifies all vertices
v′ ∈ V that the robot with a full tank can reach from
vertex v without refuelling. Specifically, Alg. 2, initializes
Reach(v) as an empty set for each v ∈ V . In each iteration,
it designates a vertex v and runs a Dijkstra search from v
to all other vertices in G to find vertices that are reachable
from v without refuelling. Lines 3-17 show this Dijkstra
search process starting from a specific vertex v. This algorithm
involves iterating through vertices in V and traversing their
successors to update the distances.

2) Heuristic Computation: A possible way to compute
the heuristic is to first run an exhaustive backward Dijkstra
search on G from vg to any other vertices in G using fuel
consumption d(u, v) (ignoring the fuel tank limit of the robot
and the refuelling cost). After this Dijkstra search, let dvg (v)
denote the minimum fuel consumption path from v to vg . Let
cmin := minv∈V−{vg}(c(v)) denote the minimum fuel price in
G. Then, let h(l) = max{(dvg (v(l)) − q(l))cmin, 0} be the
h-value of label l. When computing this heuristic, the tank
limit of the robot is ignored and the fuel price at any station
is a lower bound of the true price at that station. As a result,
h(v) provides a lower bound of the total fuel cost to reach vg
from v. We therefore have the following lemma.

Lemma 2 (Admissible Heuristic) The heuristic, h(l) =
max{(dvg (v(l))− q(l))cmin, 0}, is admissible.

3) CheckForPrune(l, v(l)): As shown in Alg. 3, this proce-
dure checks for dominance for each label l against all labels in
F(v(l)), the frontier set at vertex v(l), by using Def. 2. Alg. 3
iterates the frontier set F , with its efficiency determined by the

(a) (b)

(c) (d)

Fig. 2: A toy example showing the Refuel A∗ with four
vertices. The graph G has four vertices (o, a, b and t), with
fuel consumption in black, fuel price in blue, qmax = 6
and kmax = 2. The i-th label associated with a vertex v is
li = (v, gi, qi, ki). The optimal path is shown to be o → b → t,
with a cost of 15.

size |F(v(l))|, leading to a complexity of O(|F(v(l))|). This
dominance check can be expedited by the techniques in [24],
[25], which is left for our future work.

Remark 2 We use the same definition of GSP as in [11],
which assumes the robot always starts with an empty tank.
For the cases where the initial tank at vo is not empty (i.e,
qo > 0), one can construct a new problem that starts with an
empty tank at a pseudo vertex vp, and vp is only connected
with vo such that, by following the Lemma 1, the robot can
only fill up the tank at vp and then reaches vo with qo amount
of remaining fuel. More details about constructing the new
problem is described in [11].

C. RF-A∗ Example

An example of Alg. 1 RF-A∗ is shown in Fig. 2. It considers
a graph G with four vertices o, a, b, and t. The source is o, and
goal t. The label l0 = (o, 0, 0, 0) is initiated and inserted into
OPEN. In the first search iteration, as seen in Fig. 2(b), l0
is popped from OPEN. l0 does not reach the goal vertex. Its
reachable vertices are computed, which leads to labels l1 =
{a, 12, 4, 1} and l2 = {b, 10, 0, 1}. To compute l1, we can see
that, since c(a) > c(o), the robot fills up the tank and then
moves to a which causes g(l1) = 12, q(l1) = 6 − 2 = 4
and k(l1) = 1. Alternately, c(b) < c(o), so the robot only
fills up the amount needed to go to b, leading to label l2 with
g(l2) = 10, q(l2) = 5 − 5 = 0 and k(l2) = 1. Both l1 and
l2 are added to the OPEN as they are non-dominated. Next
(Fig. 2(c)), l2, which has the lowest f -value, is popped from
OPEN, and follows the same process for generating labels
l3, l4and l5 corresponding to vertices o, a and t with k(l3) =
k(l4) = k(l5) = 2. Subsequently, l3 and l4 are pruned by l0

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 5

and l1 respectively, using CheckForPrune. Hence, only l5 is
added into the OPEN, that is, OPEN = {l1, l5}. In the next
iteration, as shown in Fig. 2 (d), l1 is popped and generates
l8. The OPEN becomes {l8, l5}. l8 is the next popped label. It
reaches the goal and represents an optimal solution. The path
and the minimum cost are o → b → t and 15 respectively.

D. Analysis

In the worst case, RF-A∗ has the same run-time complexity
O(kmaxn

3) as the basic version of the DP method [11]. This
scenario for RF-A∗ may occur when the heuristic is absent
(e.g. h(v) = 0 for any v ∈ V), dominance pruning does not
occur, and all possible labels are expanded. However, as shown
in Sec. V, in practice, RF-A∗ is often much faster than the DP
method. The following theorem summarizes this property.

Theorem 1 RF-A∗ has polynomial worst-case run-time com-
plexity.

In Alg. 1, due to Line 14, RF-A∗ never expands a label l
with k(l) = kmax. As a result, RF-A∗ never generates labels
with more than kmax refuelling stops, and the path returned
by RF-A∗ is feasible, i.e., does not exceed the limit on the
number of stops kmax. The following lemma thus holds.

Lemma 3 (Path Feasibility) The path returned by RF-A∗ is
feasible.

To expand a label, RF-A∗ considers all reachable neigh-
boring vertices as described in Sec. IV-B1 and determine the
amount of refuelling via Lines 17-25. With Lemma 1, the
expansion of a label l in RF-A∗ is complete, in a sense that,
all possible actions of the robot, which may lead to an optimal
solution, are considered during the expansion. The following
lemma summarizes this property.

Lemma 4 (Complete Expansion) The expansion of a label
in RF-A∗ is complete.

During the search, if a label is pruned by dominance in
CheckForPrune , then this label cannot lead to an optimal
solution for the following reasons. If a label l = (v, g, q, k) is
dominated by any existing label l′ = (v, g′, q′, k′) ∈ F(v(l)).
This means that l has a higher cost g ≥ g′, lower remaining
fuel q ≤ q′ and has made more stops k ≥ k′ than l′. Assume
that expanding l leads to an optimal solution π∗, and let
π∗(v, vg) denote the sub-path within π∗ from v to vg . Then,
another path π′ can be constructed by concatenating the path
represented by l′ from vo to v, and π∗(v, vg) from v to vg .
Path π′ is feasible and its cost g(π′) ≤ g(π∗). So, π′ is a
better path than π∗, which contradicts with the assumption.
We summarize this property with the following lemma.

Lemma 5 (Dominance Pruning) Any label that is pruned by
dominance cannot lead to an optimal solution.

We now show that RF-A∗ is complete and returns an optimal
solution for solvable instances.

Theorem 2 (Completeness) For unsolvable instances, RF-A∗

terminates in finite time. For solvable instance, RF-A∗ returns
a feasible solution in finite time.

Proof: Due to Lemma 1 and that the graph G is finite,
only a finite number of possible labels can be generated
during the search. With Lemma 4, the expansion of a label
is complete, which means, RF-A∗ eventually enumerates all
possible labels. For an unsolvable instance, RF-A∗ terminates
in finite time after enumerating all these labels. For solvable
instances, due to Lemma 3, RF-A∗ terminates in finite time
and finds a label that represents a feasible path.

Theorem 3 (Solution Optimality) For solvable instances,
the path returned by RF-A∗ is an optimal solution.

Proof: When a label l is popped from OPEN and claimed
as a solution by RF-A∗, due to Lemma 2, any other labels
in OPEN and their successor labels cannot lead to a cheaper
solution than g(l). With Lemma 5, the pruned labels cannot
lead to a cheaper solution than l.

V. EXPERIMENTAL RESULTS

This section compares the performance of RF-A∗ with
DP [11], and a Mixed-Integer Programming (MIP) model,
which are described in Sec. V-A. Both DP and RF-A∗ require
a preprocessing to compute the reachable set for all vertices in
the graph (Alg. 2). Although this preprocessing is time con-
suming and takes most of the runtime of both methods, it only
needs to run once to support arbitrary number of invocation
on the planner, allowing the runtime to be amortized. So we
exclude the preprocessing time from the runtime, readers can
find it from Table I. In the remaining sections, all runtime
values are solely for the search after the preprocessing.

In the experiments, we use both a synthetic and a real-world
dataset. Fig. 3 shows an example of each dataset. The synthetic
dataset includes three small (Synth-S) and three large (Synth-
L) random graphs. Each random graph is a binomial graph
that has a single connected component, with a probability of
0.3 for edge creation [7]. The vertex numbers are 8, 16 and 32
for Synth-S, and 256, 512, 1024 for Synth-L. For the synthetic
maps, the refuelling cost c at vertices are random integers from
1 to 10.

The real-world dataset consists of five road networks from
OpenStreetMap. For each city map, the refuelling cost c at
vertices are randomly sampled from 2.5 to 4.52. Table I
presents a summary of the graphs.

Table II shows the default parameters, where the tank
capacity qmax, and the maximum refuelling stop kmax are
chosen based on Table I in the following way. For small maps
(Synth-S), we set qmax and kmax to ensure that there is always
a solution. For large maps (Synth-L and City), we set qmax to
approximately three times the average edge cost. A pair of
start and goal vertex in a map defines a GSP instance. For
all instances, we confirmed that both DP and RF-A∗ always
have the same cost, which is not surprising since they both
guarantee solution optimality. Each GSP instance has a 30-
seconds runtime limit. All methods are implemented in C++
and tested on Ubuntu 22.0 Desktop with a 13th Gen Intel
i7-13700 and 32GB RAM. 3

2Values are referenced from https://gasprices.aaa.com
3Our software and dataset is available at https://github.com/rap-lab-org/

public refuelastar

https://gasprices.aaa.com
https://github.com/rap-lab-org/public_refuelastar
https://github.com/rap-lab-org/public_refuelastar

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 6

(a) (b)

Fig. 3: (a) Visualization of a random map. (b) Visualization of
the map for Philadelphia, USA. It showcases the road network
of the city, where the red dots represent the gas stations.

Dataset Map |V | |E| Emedian Preproc.(s)

Synth-S 8 8 15 5.0 0.0
16 16 51 4.0 0.0
32 32 269 4.0 0.0

Synth-L 256 256 19473 4.0 0.2
512 512 78783 4.0 2.8
1024 1024 314529 4.0 33.7

City Phil 61 3661 9920.4 0.0
Austin 87 7483 9842.9 0.0
Phoenix 178 31507 19021.7 0.2
London 258 66307 22930.7 0.7
Moscow 423 178507 20706.2 3.6

TABLE I: Summary of the two datasets. Emedian is the me-
dian edge cost. Preproc. is the preprocessing time in second.

A. Baselines

1) Dynamic Programming (DP): We provide details of DP
for GSP from [11]. This DP defines a set of sub-problems
where each one is (v, k, q) with v ∈ V , k denoting the number
of stops and q denoting the gas level. For each sub-problem, let

Parameters\Datasets Synth-S Synth-L City

qmax 8 15 60000
kmax 3 10 10

TABLE II: Default input parameters of each dataset, where
Synth-S and Synth-L are synthetic random maps with small
size (8, 16, 32) and large size (256, 512, 1024) respectively

Fig. 4: Runtime on the synthetic dataset.

A(v, k, q) represent the minimal cost to traverse from vertex
v to the goal vg , within k refuelling stops, and starting with q
units of fuel. With the help of Lemma 1, for each v ∈ V , there
is only a finite number of possible values that q can take, which
is bounded by |V |. As a result, the set of sub-problems is
finite since each of v, k, q can take a finite number of possible
values. The base case of the DP method is A(vo, 0, 0) = 0,
and the default value for all other sub-problems are ∞. Then,
the DP method iteratively solve all sub-problems A(v, k, q)
based on the base case or previously solved sub-problems.
The optimal solution can be obtained from A(vg, kmax, 0).
In [11], two methods are presented: a naive method with a time
complexity of O(kmaxn

3) and an advanced method reduces
the complexity to O(kmaxn

2 log(n)). We use the advanced
method for comparison in our experiments.

2) Mixed Integer Programming Formulation: We introduce
a simple Mixed Integer Programming formulation as an alter-
native baseline to solve the GSP. The solver for the MIP model
is Gurobi 11. A binary variable x(u, v) indicates if a path
passes through the edge from u to v, and binary variable y(u)
indicates whether the robot refuels at the vertex u. Decision
variables a(u), q(u) are introduced in Sec. III. The objective
function in Eq.1 is the total fuel cost along the path (borrowed
from Sec. III), and is to be minimized. Eq. (2) and Eq. (3)
define the domain of decision variables. Eq. (4) defines the
limit on the refuel stops, and Eq. (5) defines the path from vo
to vg . Eq. (6) indicates that if an edge (u, v) is on the path,
i.e., x(u, v) = 1, then the remaining fuel at v must be equal
to the remaining fuel at u plus the amount of refuelling at
u, minus the consumption on the edge. Eq. (7) expresses the
optimal refuelling strategy in Lemma 1.

min
a(u),q(u),x(u,v)

(∑
c(u)a(u)

)
(1)

x(u, v) ∈ {0, 1}
q(u), a(u) ≥ 0

q(o) = 0

q(u) + a(u) ≤ qmax

(2)

y(u) =

{
1, a(u) > 0

0, a(u) = 0
(3)

∑
u∈V

y(u) ≤ kmax (4)

∑
v∈V

x(u, v)−
∑
v∈V

x(v, u) =

1, u = vo;

−1, u = vg;

0, u ∈ V/{vo, vg}
(5)

(q(u) + a(u)− d(u, v)− q(v))x(u, v) = 0, (u, v) ∈ E (6)

∀x(u, v) = 1 , (u, v) ∈ E,{
a(u) = qmax, c(u) < c(v)

a(u) + q(u) ≥ d(u, v), c(u) ≥ c(v)

(7)

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 7

Fig. 5: (a) and (b) show runtime and memory cost of all methods. (c) shows the speed-up of RF-A∗ variants compare to DP.

Fig. 6: Speed-up compared to RF-A∗
noh, with the increase in its explored states. Points below the red dash lines indicate

performance worse than RF-A∗
noh.

B. Synthetic Dataset Results

For each map from Synth-S, we create an instance for each
possible pair of start-goal vertices, and for each map from
Synth-L, we randomly select 100 vertex pairs. Fig. 4 presents
the results.

In Synth-S, we can see that both DP and RF-A∗ can find
optimal solutions within tens of microseconds. Although DP
initially performs slightly faster than RF-A∗ when handling a
small graph, this advantage diminishes as the size of the graph
increases. Eventually, in Synth-L RF-A∗ becomes faster than
DP by several factors. Conversely, MIP is slower than both
DP and RF-A∗ by orders of magnitude, and this gap increases
as the size of the graph grows. We therefore remove the MIP
from the subsequent experiments.

C. City Dataset Results

The runtime of RF-A∗ includes heuristic computation and
search process. The former requires a backward Dijkstra from
the goal location, and the computed heuristic can reduce the
runtime of the search by generating fewer labels. In practice,
we can reuse the computed heuristic as long as the goal
location remains the same, namely, by caching the heuristic.
The overall influence of the heuristic on the search process
are two-folds. On the one hand, it can slow down the search
due to the overhead on computing the heuristic. On the other
hand, it can accelerate the search if the speed-up on search
outweighs the overhead, or if no overhead exists when the
cached heuristic can be used.

To show the effectiveness of the heuristic in RF-A∗, we
introduce additional baselines. The first, RF-A∗

noh, conducts a

search without a heuristic. The second, RF-A∗
cached, excludes

the runtime to compute the heuristic before the search starts
and only counts the runtime for search, representing an ideal
situation where a cached heuristic is always available.

In this dataset, instances are 100 randomly selected vertex
pairs from the graph. To compare the number of sub-problems
have been explored by RF-A∗, RF-A∗

noh, and DP, we define the
term state. The #States for RF-A∗ and RF-A∗

noh refers to the
number of labels that are generated during the search. For DP,
#States refers to the number of A(v, k, q) whose cost values
are computed during the DP iterations. As shown in Fig. 5(a)
and 5(b), DP has a similar #States and has similar runtime
across various instances. Compared to DP, RF-A∗ explores
fewer states and needs less runtime, while RF-A∗

noh needs less
runtime but explores more states in the case of small graphs
(e.g., Phil and Austin).

We use the word “the speed-up of an algorithm” to denote
the ratio of the runtime of DP divided by the runtime of
that algorithm. Fig. 5(c) reveals that most results of RF-A∗

have a speed-up between 2 to 8 times, compared to DP. The
results of RF-A∗

noh are distributed across a wider range, which
means without the guidance of the heuristic, the search may
expand many states that are useless to find an optimal solution.
For the median values, RF-A∗

noh shows a better performance
than RF-A∗, particularly with larger cities, e.g., London and
Moscow, which suggests that the major contributor to RF-A∗’s
runtime is the heuristic computation, making RF-A∗ slower
than RF-A∗

noh for some instances. Finally, RF-A∗
cached com-

bines the benefit of having a heuristic and eliminates the
overhead of computing a heuristic, which leads to the fastest
approach and the speed-up of RF-A∗

cached rises towards a

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2025 8

range of 8 to 64.
To better understand the effectiveness of heuristic across

different instances, we plot the speed-up factor of RF-A∗

and RF-A∗
cached, compared to RF-A∗

noh with the increasing
number of generated state of RF-A∗

noh, shown in Fig. 6. We
can see that, with the guidance provided by the heuristic,
RF-A∗ runs faster than RF-A∗

noh in instances that require a
lot of state generation, despite the overhead of computing the
heuristic. This result indicates that the existing pre-processing
techniques on a road network (e.g., [6], [15]) can be potentially
applied to reduce the overhead of computing the heuristic to
further expedite the search.

VI. CONCLUSION AND FUTURE WORK

This paper investigates the GSP problem introduced in
[11] and develops RF-A∗, a fast A∗-based algorithm that
leverages the heuristic search and dominance pruning rules.
Numerical results verify the advantage of RF-A∗ over the
existing dynamic programming approach.

The limitation of our approach is that it relies on the
assumption that all information about the graph and fuel
cost are known in advance and remains unchanged, which
may not hold in practice, e.g., the fuel price changes over
time. For future work, one can introduce an additional
time dimension [23] to RF-A∗ if the time-vary information
is available. One can also integrate RF-A∗ into a predict-
then-optimize framework [4] if the environment is not fully
observable. Finally, one can also consider the multi-agent
version of the problem [22].

REFERENCES

[1] Rashid Alyassi, Majid Khonji, Areg Karapetyan, Sid Chi-Kin Chau,
Khaled M. Elbassioni, and Chien-Ming Tseng. Autonomous Recharging
and Flight Mission Planning for Battery-Operated Autonomous Drones.
IEEE Trans Autom. Sci. Eng., 20(2):1034–1046, 2023.

[2] Cedric De Cauwer, Wouter Verbeke, Joeri Van Mierlo, and Thierry
Coosemans. A Model for Range Estimation and Energy-Efficient Rout-
ing of Electric Vehicles in Real-World Conditions. IEEE Transactions
on Intelligent Transportation Systems, 2020.

[3] Giovanni De Nunzio, Ibtihel Ben Gharbia, and Antonio Sciarretta. A
General Constrained Optimization Framework for the Eco-Routing Prob-
lem: Comparison and Analysis of Solution Strategies for Hybrid Electric
Vehicles. Transportation Research Part C: Emerging Technologies,
123:102935, February 2021.

[4] Emir Demirovic, Peter J. Stuckey, Tias Guns, James Bailey, Christopher
Leckie, Kotagiri Ramamohanarao, and Jeffrey Chan. Dynamic Program-
ming for Predict+Optimise. In The 34th AAAI, 2020.

[5] Seyed Sajjad Fazeli, Saravanan Venkatachalam, and Jonathon M
Smereka. Efficient Algorithms for Electric Vehicles’ Min-Max Routing
Problem. Sustainable Operations and Computers, 2024.

[6] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian
Vetter. Exact Routing in Large Road Networks Using Contraction
Hierarchies. Transportation Science, 2012.

[7] Edgar N Gilbert. Random Graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144, 1959.

[8] Shieu Hong Lin, Nate Gertsch, and Jennifer R. Russell. A Linear-Time
Algorithm for Finding Optimal Vehicle Refueling Policies. Operations
Research Letters, 35(3):290–296, May 2007.

[9] Panagiotis Karakostas and Angelo Sifaleras. The Pollution Traveling
Salesman Problem with Refueling. Comput. Oper. Res., 167:106661.

[10] Mohammadjavad Khosravi and Hossein Pishro-Nik. Unmanned Aerial
Vehicles for Package Delivery and Network Coverage. In 2020 IEEE
91st Vehicular Technology Conference, 2020.

[11] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To Fill or Not
to Fill: The Gas Station Problem. ACM Transactions on Algorithms,
7(3):1–16, July 2011.

[12] Woojin Lee, Balsam Alkouz, Babar Shahzaad, and Athman Bouguet-
taya. Package Delivery Using Autonomous Drones in Skyways. In
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the ACM International Symposium on Wearable
Computers. ACM, 2021.

[13] Longjiang Li, Haoyang Liang, Jie Wang, Jianjun Yang, and Yonggang
Li. Online Routing for Autonomous Vehicle Cruise Systems with Fuel
Constraints. Journal of Intelligent & Robotic Systems, 2022.

[14] Chung-Shou Liao, Shang-Hung Lu, and Zuo-Jun Max Shen. The
Electric Vehicle Touring Problem. Transportation Research Part B:
Methodological, 86:163–180, April 2016.

[15] Arthur Mahéo, Shizhe Zhao, Afzaal Hassan, Daniel D Harabor, Peter J
Stuckey, and Mark Wallace. Customised Shortest Paths Using a
Distributed Reverse Oracle. In SOCS, 2021.

[16] André L. C. Ottoni, Erivelton G. Nepomuceno, Marcos S. De Oliveira,
and Daniela C. R. De Oliveira. Reinforcement Learning for the Traveling
Salesman Problem with Refueling. Complex & Intelligent Systems, 2022.

[17] Kleitos Papadopoulos and Demetres Christofides. A Fast Algorithm for
the Gas Station Problem. Information Processing Letters, 2018.

[18] Sepideh Pourazarm and Christos G. Cassandras. Optimal Routing of
Energy-Aware Vehicles in Transportation Networks With Inhomoge-
neous Charging Nodes. IEEE Transactions on Intelligent Transportation
Systems, 19(8):2515–2527, August 2018.

[19] Haripriya Pulyassary, Kostas Kollias, Aaron Schild, David B. Shmoys,
and Manxi Wu. Network Flow Problems with Electric Vehicles. In
Jens Vygen and Jaroslaw Byrka, editors, IPCO 2024, volume 14679 of
Lecture Notes in Computer Science, pages 365–378. Springer, 2024.

[20] Subramanian Ramasamy, Jean-Paul Reddinger, James Dotterweich, Mar-
shal A. Childers, and Pranav A. Bhounsule. Coordinated Route Planning
of Multiple Fuel-constrained Unmanned Aerial Systems with Recharging
on an Unmanned Ground Vehicle for Mission Coverage. J. Intell.
Robotic Syst., 2022.

[21] Zhongqiang Ren, Carlos Hernández, Maxim Likhachev, Ariel Felner,
Sven Koenig, Oren Salzman, Sivakumar Rathinam, and Howie Choset.
Emoa*: A framework for search-based multi-objective path planning.
Artificial Intelligence, 339:104260, 2025.

[22] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. CBSS:
A new approach for multiagent combinatorial path finding. IEEE
Transactions on Robotics, 39(4):2669–2683, 2023.

[23] Zhongqiang Ren, Sivakumar Rathinam, Maxim Likhachev, and Howie
Choset. Multi-objective safe-interval path planning with dynamic obsta-
cles. IEEE Robotics and Automation Letters, 7(3):8154–8161, 2022.

[24] Zhongqiang Ren, Zachary B. Rubinstein, Stephen F. Smith, Sivakumar
Rathinam, and Howie Choset. ERCA*: A New Approach for the
Resource Constrained Shortest Path Problem. IEEE Transactions on
Intelligent Transportation Systems, pages 1–12, 2023.

[25] Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. Enhanced Multi-Objective A* Using
Balanced Binary Search Trees. In Proceedings of the International
Symposium on Combinatorial Search, 2022.

[26] Yoshinori Suzuki. A Generic Model of Motor-Carrier Fuel Optimization.
Naval Research Logistics (NRL), 55(8):737–746, 2008.

[27] Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan. Adaptive
Routing and Recharging Policies for Electric Vehicles. Transp. Sci.,
51(4):1326–1348, 2017.

[28] Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan. Optimal
Recharging Policies for Electric Vehicles. Transportation Science,
51(2):457–479, May 2017.

