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Abstract—This paper considers multi-robot trajectory plan-
ning for information gathering with intermittent connectivity
maintenance. For information gathering, ergodic search provides
a framework to inherently balance between exploration (visit
all locations for information) and exploitation (greedily search
high information regions), by planning trajectories such that the
amount of time the robots spend in a region is proportional
to the amount of information in that region. Although ergodic
search was studied in different ways, most of them ignore or
over-simplify the connectivity maintenance requirement among
the robots, which is crucial for information exchange in mis-
sions without global communication. This paper introduces a
novel probabilistic measure of inter-robot connectivity based on
the time-averaged statistics of the robots’ trajectories. Such a
measure provides a new way to impose intermittent connectivity
constraints during the ergodic search, which leads to an optimal
control problem (OCP). We derive the theoretical condition for
optimality based on the Pontryagin principle, and develop iLQR
and augmented Lagrangian methods to numerically solve this
OCP. Our experimental results validate the effectiveness of the
proposed probabilistic measure and demonstrate that the ergodic
search combined with this measure achieves better ergodic
metrics compared to baseline approaches. We also demonstrate
our planner on a multi-drone system.1

I. INTRODUCTION

This paper investigates a multi-robot trajectory planning
problem for information gathering while maintaining inter-
mittent connectivity among the robots, which arises in ap-
plications such as exploration [1] and search and rescue [2].
Given an information map, a probability distribution describ-
ing the information density at each location over the area
to be searched, this paper aims to plan trajectories for the
robots to gather information from this map and establish the
robot-robot connection when needed to exchange information.
Existing approaches for information collection range from
complete coverage [3, 4] that uniformly and systematically
covers the area, to information-theoretic approaches [5, 6] that
greedily direct the robot to the next location with the highest
information gain. Different from them, ergodic search [7–
9] provides an approach that can inherently balance between
exploitation (greedily moving to high-information areas) and
exploration (visiting all possible locations). Ergodic search
plans trajectories by minimizing an ergodic metric (ergodicity)

1This work was supported by the Natural Science Foundation of Shanghai
under Grant 24ZR1435900, and the Natural Science Foundation of China
under Grant 62403313. (Corresponding author: Zhongqiang Ren.) Our code
is available at https://github.com/rap-lab-org/public pymec.
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Fig. 1. Multi-robot ergodic search with intermittent connectivity. (a): Multiple
drones plan ergodic trajectories among obstacles to explore a map character-
ized by information distribution while maintaining intermittent pairwise con-
nectivity. The robots have to balance between information gathering (evaluated
via the ergodic metric) and connectivity maintenance. (b): The top-down view
of the map and the trajectories. (c): A snapshot during the trajectory execution,
where drones are establishing connections and searching for information.

so that the time spent in any region is proportional to a measure
of information in that region.

Although multi-robot ergodic search has been investigated a
lot [10–14], most of them either ignores the limited connectiv-
ity among robots [10, 11], assuming all robots are connected
with a central communication hub at all times [12, 13], or
require all robots to stay connected with pre-determined and
fixed connection topology [14]. This paper aims to let the
robots determine flexibly when and where to establish con-
nections during the ergodic search, and thus has the potential
to achieve better ergodicity.

Multi-robot information collection with connectivity main-
tenance has been investigated [15–20], and the challenge is
to determine when and where the robots should meet and
what topology of the connection should be formed. In general,
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connectivity maintenance and information collection are two
competitive objectives in the sense that maintaining connec-
tivity often lowers the efficiency of information collection,
especially when the information is widely distributed over the
workspace and the robots have to deviate from their optimal
trajectories for information collection to build inter-robot
connections. To balance these two competitive objectives,
instead of maintaining the connection at all times [21–24],
requiring intermittent connection with either fixed periods [17]
or computed connection schedules [18–20] can help improve
the efficiency of information collection.

The idea of maintaining connectivity during ergodic search
in this paper belongs to the broad category of intermittent
connectivity, yet in a soft manner. Unlike existing approaches
to maintain intermittent connection, such as planning recon-
nection paths [16], searching for other robots to establish
connections [25], sampling feasible connection paths [17], or
scheduling discrete connection events [18–20], we introduce
a novel probabilistic measure for characterizing inter-robot
connectivity based on the time-averaged statistics of robot
trajectories. The proposed measure attempts to avoid explicitly
formulating the connection locations, times, and topologies as
the planning objective or constraints, or imposing any hard
constraints on connectivity. Instead, this paper seeks to infer
the probability of connection among the robots based on the
distribution of their trajectories as the time horizon goes to
infinity. Such a measure provides a way to impose intermittent
connectivity constraints as soft constraints for trajectory opti-
mization, and allows us to formulate a corresponding optimal
control problem (OCP) that considers both ergodic search and
connectivity maintenance. To solve this OCP, in theory, we
show how to rewrite this OCP into a standard Bolza form,
and derive the condition for optimality based on the Pontryagin
principle. In practice, we provide an algorithm based on the
augmented Lagrangian method (ALM) and iterative linear
quadratic regulator (iLQR) that can numerically solve the OCP.

Our experimental results verify the effectiveness of the
proposed probabilistic measure, as we observe a positive
correlation between the value of the measure and the actual
connection time between the robots along their planned trajec-
tories. Additionally, the results show that the ergodic search
combined with our measure achieves better ergodic metrics
than the baseline approaches, and the robots can intelligently
balance between ergodic search and connectivity maintenance
in the long run. Finally, we showcase the use of our planner
on a multi-drone system in a lab setting.

II. RELATED WORK

A. Ergodic Search

Ergodic search optimizes robot trajectories by minimizing
the difference between the time-averaged statistics of the
robot’s path and the desired information distribution within
a workspace. To quantify this difference, researchers have
developed various optimization metrics. Among them, spectral
multi-scale coverage (SMC) [7] employs Fourier decomposi-
tion to measure the difference. Kullback-Leibler (KL) diver-

gence metric [26] approximates the robot’s spatial distribution
using a Gaussian mixture model. Kernel ergodic metric [27]
extends ergodic search from Euclidean space to Lie groups in
a computationally efficient way. The ergodic maximum mean
discrepancy metric [28] samples from the search domain to
define the metric and plan ergodic trajectories.

Gradient-based methods are commonly employed to plan
ergodic trajectories by optimizing the ergodic metric. These
approaches include feedback control laws for both first-order
and second-order dynamics in [7], receding-horizon ergodic
exploration [12], the ergodicity-based coverage algorithm via
a potential field [29], the application of differential dynamic
programming (DDP) [9], and iterative optimization using
linear quadratic regulator (LQR) [8].

The scope of ergodic search has recently expanded to
encompass various optimization objectives, including time
optimality [30], multi-objective optimization [10], and energy
efficiency [31]. The practical applications of ergodic control
have also diversified, spanning robotic insertion tasks [32],
preserving flows measurement [33], and real-time area cover-
age and target localization applications [12, 13].

B. Connectivity Maintenance

Connectivity maintenance was extensively studied. Contin-
ual connectivity requires all robots to stay connected at all
times globally [21–23] or locally [24], which is suitable for
communication-critical missions. Periodic connectivity [17]
requires all robots to regain connectivity at pre-defined fixed
intervals. Intermittent connectivity [18–20] enables the robots
to meet at some locations intermittently over time without
enforcing a fixed time interval between two subsequent con-
nections, demonstrating higher flexibility.

Various approaches have been studied to maintain intermit-
tent connectivity. Some methods focus on selecting connec-
tion times or locations, such as searching other robots for
connection [25], choosing rendezvous locations [34], planning
reconnection paths with minimum travel cost [16], and de-
termining connection times and locations using integer linear
programming (ILP) [15]. Other work seeks to first determine
the connection schedule and then plan the trajectories based
on the schedules [18–20].

This paper aims to maintain intermittent connectivity during
ergodic search. Given these advances in intermittent connec-
tivity maintenance, most existing methods cannot be directly
applied to ergodic search, since many connectivity mainte-
nance approaches involve discrete task planning [25, 34] or
sampling-based methods [17, 18], which are challenging to
integrate with gradient-based trajectory optimization for er-
godic search since the optimization objective (i.e., the ergodic
metric) is defined over the entire trajectory. Additionally,
ergodic trajectory planning studies the statistical behaviors of
dynamical systems in the long run, and investigating inter-
robot connectivity based on the statistical behaviors of the
dynamical systems may provide a new planning framework
to intelligently balance between connectivity maintenance and
ergodicity of the system in the long run.



III. PRELIMINARIES

A. Notations

Let W = [0, L1]× · · · × [0, Lν ] ⊂ Rν , ν ∈ {1, 2, 3} denote
the workspace for all robots, where Lν ∈ R+ is the bound for
the ν-th dimension of the workspaceW . Let w ∈ W represent
a point (location) in the workspace. Let t ∈ [0, T ] denote the
time variable, where T ∈ R+ represents the planning time
horizon. Let IN = {1, 2, · · · , N} represent the set of robots,
and superscripts such as i, j on variables denote the associated
robot. Additionally, let R = {(i, j) | i, j ∈ IN , i ̸= j} denote
the set of enumerated robot pairs.

Each robot i ∈ IN has a state xi(t) ∈ X , control input
ui(t) ∈ U , and location qi(t) ∈ W , where X ⊂ Rn and
U ⊂ Rm denote the state space and control space, respectively.
Furthermore, let x(t) = (x1(t), · · · , xN (t)) ∈ XN = X ×
· · · × X , u(t) = (u1(t), · · · , uN (t)) ∈ UN = U × · · · × U ,
and q(t) = (q1(t), · · · , qN (t)) ∈ WN =W×· · ·×W denote
the joint state, joint control, and joint location column vectors,
respectively. Finally, let ẋ(t) = f(x(t), u(t)) denote the joint
dynamics of all robots. For notational simplicity, x, u, and q
represent the entire trajectories over [0, T ] in this paper.

B. Ergodic Metric

Let ϕ(w) : W → R+
0 denote a time-invariant probabil-

ity distribution function such that
∫
W ϕ(w)dw = 1, which

describes the information density at each location across the
workspace W . Based on the trajectory qi, the time-averaged
statistics for robot i ∈ IN is defined as follows [7].

ci(w) = c(w, qi) =
1

T

∫ T

0

δ(w − qi(t))dt (1)

where δ(w) is the Dirac delta function such that δ(0) = +∞
and δ(w) = 0, w ̸= 0, satisfying

∫
Rν δ(w)dw = 1. Note that∫

W ci(w)dw = 1 as qi(t) ∈ W,∀t ∈ [0, T ].
With ϕ(w) and ci(w), the ergodic metric (ergodicity) for all

robots is defined as the difference between the time-averaged
statistics of all the robots and the information distribution map
in the Fourier coefficient space as follows [7].

E(ϕ, q) =
∑
k∈K

Λk

(
1

N

∑
i∈IN

cik − ϕk

)2

(2)

=
∑
k∈K

Λk

(
1

NT

∑
i∈IN

∫ T

0

Fk(q
i(t))dt−

∫
W

ϕ(w)Fk(w)dw

)2

Here, cik and ϕk are the Fourier coefficients of ci(w) and ϕ(w),
respectively. k = (k1, · · · , kν) ∈ K is the frequency vector of
the Fourier coefficients, and K ⊂ Nν represents a selected
set of frequencies in practical computation. Besides, Fk(w) =
1
hk

∏ν
m=1 cos

(
kmπ
Lm

wm

)
is the cosine basis function with the

normalization term hk [7, 30, 35]. Λk = (1+∥ k ∥22)−(ν+1)/2

is the weight of each Fourier coefficient.
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Fig. 2. Visualization of the connection probability. (a)-(b): The trajectories
qi(t), qj(t) of robots i, j with time t represented as the z-axis. (c): The
top-down view of the trajectories of robots i, j. (d)-(e): The corresponding
time-averaged statistics ci and cj represented as heatmaps. (f): The joint
distribution heatmap (ci · cj ).

IV. PROBABILISTIC MEASURE OF CONNECTIVITY

This section first defines the concepts related to the new
probabilistic measure of connectivity between a pair of robots,
and then discusses the intuition behind the measure.

A. Connection Probability

We define the connection area S(w) ⊂ Rν for a location
w ∈ W as follows. Robot j is connected with robot i at time t
if robot j’s location qj(t) lies within robot i’s connection area
S(qi(t)) (i.e., qj(t) ∈ S(qi(t))). In this paper, we assume the
connectivity between robots is bidirectional:

Assumption 1 (Bidirectional Connectivity).
If qj(t) ∈ S(qi(t)), then qi(t) ∈ S(qj(t)).
An example choice of S(w) that satisfies the bidirectional
connectivity assumption is a circular region centered at w with
a fixed radius that remains constant across all robots (Fig. 2).

Intuitively, Eq. (1), i.e., the time average statistics ci(wi) of
a trajectory qi, describes the percentage of time that qi stays at
a location wi ∈ W within the time horizon T . When T goes
to infinity, ci(wi) describes the spatial distribution of robot i
in the workspace. Specifically, let

ci∞(wi) = lim
T→∞

ci(wi) = lim
T→∞

1

T

∫ T

0

δ(wi − qi(t))dt (3)

denote the spatial distribution of robot i over an infinite time
horizon, which indicates the likelihood that robot i appears at
location wi over an infinite time horizon.

Leveraging the spatial distributions of two robots, we can
infer the likelihood that the two robots are connected within
the infinite time horizon. We introduce a probabilistic measure
of connectivity between any pair of robots (i, j) ∈ R as:



Definition 1 (Connection Probability (CP)). Let P∞(qi, qj)
denote the connection probability:

P∞(qi, qj) =

∫
wi∈W

∫
wj∈S(wi)

ci∞(wi)cj∞(wj)dwjdwi (4)

The trajectories qi and qj are independent since each robot has
its own control and dynamics. As a result, the spatial distri-
butions ci(wi) and cj(wj) of robots i, j are also independent
from each other. Note that

∫
W
∫
W ci∞(wi)cj∞(wj)dwjdwi =

1, and the product ci∞(wi)cj∞(wj) represents the joint prob-
ability density of robots i and j being at locations wi and
wj respectively (not necessarily at the same time instant).
Besides, P∞(qi, qj) computes the cumulative distribution over
all possible locations wi ∈ W and wj ∈ S(wi), measuring the
probability that robot j lies within robot i’s connection area
S(qi(ti)) at any time ti over the infinite time horizon [0,∞).

Theorem 1. Given the Assumption 1, the connection proba-
bility is symmetric, i.e., P∞(qi, qj) = P∞(qj , qi).

Proof. The proof is provided in Appendix A-A.

B. Finite Time Formulation

It is noted that Eq. (4) provides a meaningful probabilistic
interpretation when T approaches infinity (as opposed to a
finite T ). When T approaches infinity, ci∞ characterizes the
spatial distribution of robot i, while P∞(qi, qj) quantifies the
connection probability between robots i and j.2 However,
planning over an infinite time horizon is impractical in real-
world applications. Hence, we introduce a finite-time approx-
imation of Eq. (4) as:

Definition 2 (Finite-Time Approximation). Let Pc(q
i, qj ; 0, T )

denote the finite-time approximated connection probability
(FCP), where the subscript c in Pc stands for “connection”.

Pc(q
i, qj ; 0, T ) =

∫
wi∈W

∫
wj∈S(wi)

ci(wi)cj(wj)dwjdwi

=

∫
wi∈W

∫
wj∈S(wi)

(
1

T

∫ T

0

δ(wi − qi(ti))dti

1

T

∫ T

0

δ(wj − qj(tj))dtj
)
dwjdwi

=
1

T 2

∫ T

0

∫ T

0

(∫
wi∈W

∫
wj∈S(wi)

δ(wi − qi(ti))

δ(wj − qj(tj))dwjdwi

)
dtjdti (5a)

=
1

T 2

∫ T

0

∫ T

0

γ(qi(ti), qj(tj))dtjdti (5b)

2Although the connection between robots requires them to be at specific
locations at the same time, the connection probability focuses on their
spatial distributions while relaxing the temporal simultaneity requirement. It
is investigated in our experiments in Sec. VII-D how this relaxation affects
the connection establishment in practice. We also derive the formulation
considering simultaneity in Sec. VII-E for comparison.

where the Connection Indicator Function (CIF) γ(wi, wj) :
W ×W → {0, 1} is defined as:

γ(wi, wj) =

{
1 wj ∈ S(wi)

0 otherwise
(6)

The transition from Eq. (5a) to (5b) is explained in the next
paragraph. Here, Pc(q

i, qj ; 0, T ) ∈ [0, 1]. Specifically, for
∀ti, tj ∈ [0, T ], Pc(q

i, qj ; 0, T ) = 0 if γ(qi(ti), qj(tj)) = 0,
and Pc(q

i, qj ; 0, T ) = 1 if γ(qi(ti), qj(tj)) = 1. For example,
when robot i stays at a stationary location q̃i ∈ W , i.e.,
qi(ti) = q̃i,∀ti ∈ [0, T ], then Pc(q

i, qj ; 0, T ) = 1 if
qj(tj) ∈ S(q̃i),∀tj ∈ [0, T ].

To bridge the transition from Eq. (5a) to (5b), we define
the CIF (6). For any given time points ti, tj ∈ [0, T ], we can
rewrite the internal double integral in Eq. (5a) as follows:∫

wi∈W

∫
wj∈S(wi)

δ(wi − qi(ti))δ(wj − qj(tj))dwjdwi

=

∫
wi∈W

δ(wi − qi(ti))

∫
wj∈S(wi)

δ(wj − qj(tj))dwjdwi

=

{
1 if qj(tj) ∈ S(qi(ti))
0 otherwise

(7)

By the properties of the Dirac delta function δ(w), the inner
integral over wj ∈ Wi evaluates to 1 if qj(tj) ∈ S(wi), and 0
otherwise. The outer integral over wi ∈ W is equal to 1 only
when wi = qi(ti). Therefore, the entire expression evaluates
to 1 if qj(tj) ∈ S(qi(ti)), and 0 otherwise.

C. Sub-Period Formulation

Instead of considering the whole planning horizon [0, T ],
sometimes it is useful to evaluate the connection probability
within a sub-period of the planning horizon. Let [t0, tf ] ⊆
[0, T ] denote a sub-period of the planning time horizon. Sim-
ilar to Eq. (5), we can then define the connection probability
within this sub-period [t0, tf ] as:

Pc(q
i, qj ; t0, tf ) =

1

(tf − t0)
2

∫ tf

t0

∫ tf

t0

γ(qi(ti), qj(tj))dtjdti (8)

As we will see later, to maintain connectivity over a sub-period
[t0, tf ], we can either maximize Eq. (8) as an objective or
enforce it to exceed a user-specified threshold as a constraint.

With this sub-period formulation, the intermittent connec-
tivity requirement can be formulated as follows. We divide
the time horizon [0, T ] into Np ∈ N+ consecutive sub-periods,
where each period p ∈ Ip = {1, . . . , Np} is defined by its start
and end time tp, tp ∈ [0, T ]. Here, the adjacent sub-periods
are consecutive, i.e., tp = tp−1. For each sub-period p, we
constrain its connection probability to be greater than a user-
defined threshold, thereby ensuring a minimum connection
probability among robots over the entire time horizon. The
relationship between the connection probability and the actual
connection status among the robots is discussed in Sec. VII.



V. OPTIMAL CONTROL AND OPTIMALITY CONDITIONS

A. Problem Formulation
Using the ergodicity (2) and the sub-period connection

probability (8), we formulate the multi-robot ergodic search
with connection maintenance (MEC) problem as follows.

Definition 3 (MEC Problem).

min
x,u

rEE(ϕ, q) +
∫ T

0

1

2
uT (t)R(t)u(t)dt (9a)

s.t. ẋ = f(x, u) (9b)
x(0) = x0 (9c)

Pc(q
i, qj ; tp, tp) ≥ εc,∀(i, j) ∈ R,∀p ∈ Ip (9d)

||qi(t)− qj(t)||2 ≥ εa,∀(i, j) ∈ R,∀t ∈ [0, T ] (9e)

Here, the objective (9a) consists of the ergodicity of all robots
and the control cost, with a hyper-parameter rE ∈ R+ defining
the weight of the ergodicity, and a positive definite matrix
R(t) ∈ RNm×Nm,∀t ∈ [0, T ] defining the weight of the
controls, respectively. The constraints (9b), (9c), (9d), and (9e)
represent the constraints on the robot dynamics, initial state,
sub-period connection probability, and collision avoidance,
respectively, where x0 ∈ XN and εc, εa ∈ R+ are the
initial state and constraint thresholds. Note that when the
sub-period number Np = 1, constraint (9d) is represented as
Pc(q

i, qj ; 0, T ) ≥ εc.

Remark 1. In Eq. (9d), we impose a constraint on the
connection probability for all pairs of robots, i.e., ∀(i, j) ∈ R,
to ensure strict pairwise connectivity. Furthermore, in some
applications, this constraint can be modified to apply only to
specific pairs of robots, as determined by a predefined con-
nection graph topology [18, 23], e.g., (i, j) ∈ {(1, 2)} ⊂ R.

B. Optimality Conditions
To derive the first-order necessary (local) optimality con-

dition for the MEC problem 3, we first define the Lagrange
function. When the Lagrange function takes the standard Bolza
form, the Pontryagin principle can be directly applied to
obtain the optimality condition. However, there are two main
challenges in the formulation of the Lagrange function:

• The ergodicity term E(ϕ, q) in (9a) contains a quadratic
term defined over the entire trajectories over the time
horizon [0, T ] of all robots, rather than just at the terminal
time, making it incompatible with the Bolza form. To
address this, we can reformulate E(ϕ, q) as a terminal
term by introducing an auxiliary system state [7, 9, 30].

• The connection probability constraint (9d) is defined over
each sub-period p without a stage-wise form, making it
incompatible with the stage cost structure of the Bolza
form. This can be resolved by reformulating the connec-
tion probability constraint as stage-wise constraints by
introducing the instantaneous connection probability.

With these reformulations, we can express the Lagrange func-
tion of MEC problem 3 in the Bolza form, allowing us to apply
the Pontryagin principle to derive the first-order necessary
conditions that characterize a locally optimal solution.

1) Reformulation of Ergodicity: By introducing an auxil-
iary system state, we can reformulate the ergodicity term in
(9a) of the MEC problem into the following terminal form.

Definition 4 (Terminal Form of Ergodicity). Let s(t) =(
s0(t), s(1,0,··· )(t), · · · , sk|K|(t)

)
∈ R|K| denote the auxiliary

system state [7, 9, 30], where each element s(t) is defined
as sk(t) =

1
N

∑
i∈IN

∫ t

0
Fk(q

i(τ))dτ − tϕk, then the ergod-
icity (2) can be expressed as:

E(ϕ, q) = 1

2
sT (T )QKs(T ) (10)

with initial condition s(0) = 0 and the following differential
constraints:

ṡ(t) = g(x(t)) =
1

N

∑
i∈IN

F (qi(t))− Φ (11)

Here, QK = 2
T 2 diag(Λ0, · · · ,Λk|K|) ∈ R|K|×|K| represents a

diagonal matrix constructed from the given elements. Addi-
tionally, Φ =

(
ϕ0, · · · , ϕk|K|

)
denotes the Fourier coefficient

vector corresponding to the information distribution ϕ(w).
Similarly, F (w) =

(
F0(w), · · · , Fk|K|(w)

)
represents the

vector of basis functions. Note that the summation
∑

i∈IN
(·)

is evaluated component-wise across the elements of F (w). To
simplify the subsequent presentation, we introduce the notation
g(x(t)) to represent the right-hand side expression of Eq. (11).

2) Instantaneous Connection Probability: For sub-period p,
we evaluate the connection probability Pc(q

i, qj ; tp, tp) by
integrating the CIF (6) over the interval [tp, tp], where the CIF
is a function characterizing the robots’ trajectories. At any time
instant t ∈ [tp, tp], the instantaneous connection probability
can be formulated as follows3.

Pc(q
i, qj , t; tp, tp) =

1

(tp − tp)
2

∫ tp

tp

γ(qi(t), qj(tj))dtj

(12)

To facilitate the construction of the Lagrange function, we
can reformulate the connection probability constraint (9d) into
an equivalent stage-wise form:∫ tp

tp

Pc(q
i, qj , t; tp, tp)−

εc
tp − tp

dt ≥ 0

∀(i, j) ∈ R,∀p ∈ Ip (13)

3) Lagrange Function: The Lagrange function for the MEC
problem 3 is formulated as:

L(x, s, u, ρx, ρs, ρc, ρa) =
rE
2
sT (T )QKs(T ) (14)

+

∫ T

0

{
l(x, u, t) + rcρ

T
c (t)c(x, u, t) + raρ

T
a (t)a(x, u, t)+

ρTx (t)(f(x(t), u(t))− ẋ(t)) + ρTs (t)(g(x(t))− ṡ(t))

}
dt

where ρx(t) ∈ RNn, ρs(t) ∈ R|K|, ρc(t) ∈ R|R| ≥ 0, ρa(t) ∈
R|R| ≥ 0 are the Lagrange multipliers corresponding to

3If t /∈ [tp, tp], the instantaneous connection probability equals zero.



constraints (9b, 11, 9d, 9e), respectively. The coefficients
rc, ra ∈ R+ are weight factors for constraints (9d, 9e). Note
that ρc(t) is piecewise constant over each sub-period, i.e.,
ρc(t) = ρpc ≥ 0 for t ∈ [tp, tp],∀p ∈ Ip, because (9d)
constrains the connection probability over each sub-period
rather than at any specific time t. The component functions
in the Lagrange function (14) are defined as:

l(x, u, t) =
1

2
u(t)TR(t)u(t) (15)

c(x, u, t) =

(
−Pc(q

i, qj , t; tp, tp) +
εc

tp − tp

)
∀(i,j)∈R

a(x, u, t) =
(
−||qi(t)− qj(t)||2 + εa

)
∀(i,j)∈R

where l(x, u, t) ∈ R denotes the stage cost, c(x, u, t) ∈ R|R|

denotes the stage-wise connection probability constraints vec-
tor for (9d) over any sub-period p in which time t lies,
and a(x, u, t) ∈ R|R| represents the collision avoidance
constraints vector for (9e), all evaluated at time t ∈ [0, T ].
For brevity, we define µ(t) = (ρc(t), ρa(t)) and I(x, u, t) =
(rcc(x, u, t), raa(x, u, t)) (or simply I(t)) as the concatenated
vectors of multipliers and inequality constraints, respectively.

4) Hamiltonian: Based on the Lagrange function (14), the
Hamiltonian of the MEC problem at time t is defined as:

H(x, s, u, ρx, ρs, µ, t) = l(x, u, t) + µT (t)I(x, u, t)+
ρTx (t)f(x(t), u(t)) + ρTs (t)g(x(t)) (16)

Theorem 2 (Necessary Optimality Condition). For a locally
optimal control law u and the resulting state trajectory x, the
following conditions must be satisfied:

ẋ = ∇ρx
H = f(x, u) with x(0) = x0 (17a)

ṡ = ∇ρs
H = g(x) with s(0) = 0 (17b)

−ρ̇x = ∇xH (17c)
ρx(T ) = 0

−ρ̇s = ∇sH = 0 (17d)

ρs(T ) =
∂
(
rE
2 sT (T )QKs(T )

)
∂s

T
∣∣∣∣∣
s(T )

= rEQKs(T )

∇µH = 0 (17e)
u∗(t) = argmin

u(t)∈UN

H(· · · , t), t ∈ [0, T ] (17f)

Proof. Pontryagin’s minimum principle [36] provides the nec-
essary conditions for a trajectory to be optimal, which consist
of the state equations with initial conditions (Eq. (17a) for
x and Eq. (17b) for s), the costate equations with terminal
conditions (Eq. (17c) for x and Eq. (17d) for s), and the
inequality multiplier equation Eq. (17e). The optimal control
input can be obtained by minimizing the Hamiltonian (16)
within the control space UN , which yields Eq. (17f). The proof
is provided in Appendix A-B.

VI. NUMERICAL APPROACH

The robot dynamics (9b) and inequality constraints I(t)
introduce nonlinearity into the optimization problem. While
the optimality condition (17) provides a theoretical foundation,
directly solving for the optimal control law remains compu-
tationally challenging. Therefore, we propose iterative-MEC
(IMEC), an iterative optimization approach that numerically
solves the MEC problem 3 based on the derivation of (17).

IMEC first converts the MEC problem to the form consisting
of the augmented cost and robot dynamics constraint using the
augmented Lagrangian method (ALM) in Sec. VI-A [37, 38].
Second, IMEC follows the idea of iterative LQR (iLQR) to
linearize the cost and dynamics to define a sub-problem in each
iteration (Sec. VI-B), and iteratively solves the sub-problem
using the Linear Quadratic Regulator (LQR) for trajectory
optimization [8, 38] (Sec. VI-C). Additionally, a technique to
avoid gradient vanishing is introduced in Sec. VI-D.

A. Augmented Lagrangian Problem

1) Augmented Cost: In Sec. V-B4, we formulate the Hamil-
tonian (16) based on the Lagrange function (14). The optimal
control law is obtained by minimizing the Hamiltonian as
in (17f). To improve convergence and handle inequality con-
straints more robustly, in addition to the corresponding multi-
plier terms in Eq. (14), we add a penalty term for inequality
constraints following the ALM [37, 38]. Let lI(x, u, t), with
penalty coefficient r ∈ R+, denote the augmented term at time
t containing the multipliers and penalty terms for the integral
and stage-wise constraints (9d) and (9e). Besides, based on
the constraint violation, the multiplier µ(t) = (ρc(t), ρa(t))
can be updated in each iteration using [37, 38]:

ρpc ← max

{
0, ρpc + r ·

∫ tp

tp

rcc(x, u, t)dt

}
(18a)

ρa(t)← max {0, ρa(t) + r · raa(x, u, t)} (18b)

During optimization, constraints I(t), t ∈ [0, T ] are incor-
porated into the cost (optimization objective). Therefore, the
augmented MEC problem is formulated as:

min
x,u

J(x, u) s.t. (9b), (9c) where (19a)

J(x, u) = rEE(ϕ, q) +
∫ T

0

l(x, u, t) + lI(x, u, t)dt (19b)

B. Linearization

1) Dynamics Linearization: Let x̄(t), ū(t), t ∈ [0, T ] de-
note the linearized trajectory. The linearized robot dynamics
about Eq. (9b) is formulated as follows:

˙δx(t) = A(t)δx(t) +B(t)δu(t) with (20)

A(t) =
∂f(x, u)

∂x

∣∣∣∣
(x̄(t),ū(t))

, B(t) =
∂f(x, u)

∂u

∣∣∣∣
(x̄(t),ū(t))

where δx(t) = x(t) − x̄(t) and δu(t) = u(t) − ū(t) denote
the state and control deviations with respect to x̄(t) and ū(t),
respectively. Here, A(t) and B(t) represent the corresponding
state and control matrices.



2) Cost Linearization: We aim to determine appropriate
deviations δx and δu that ensure the cost (19b) decreases.
Specifically, given the linearization trajectory x̄, ū, the opti-
mization objective is defined as (ignoring higher-order terms):

∆J (δx, δu) = J(x̄+ δx, ū+ δu)− J(x̄, ū)

≈ ∂J

∂x

∣∣∣∣
(x̄,ū)

δx+
∂J

∂u

∣∣∣∣
(x̄,ū)

δu (21)

The corresponding terms are formulated as follows:

∂J

∂x
= rE

∂E
∂x

+

∫ T

0

∂l(x, u, t) + ∂lI(x, u, t)

∂x
dt (22)

= rE
∂E
∂s

∂s

∂x
+

∫ T

0

lx(t) + lIx(t)dt

= rEs
T (T )QK

∫ T

0

1

N

∑
i∈IN

∂F (qi(t))

∂x
dt (23)

+

∫ T

0

lx(t) + lIx(t)dt

=

∫ T

0

rE
sT (T )QK

N

∑
i∈IN

∂F (qi(t))

∂x
+ lx(t) + lIx(t)︸ ︷︷ ︸

αT (t)

dt

and

∂J

∂u
=

∫ T

0

lu(t) + lIu(t)dt =

∫ T

0

uT (t)R(t)︸ ︷︷ ︸
βT (t)

dt (24)

Note that QK is a symmetric matrix, i.e., QT
K = QK.

With the introduced variables α(t) and β(t) in Eq. (22, 24),
the optimization objective in (21) can be reformulated as:

∆J (δx, δu) ≈
∫ T

0

αT (t)δx(t) + βT (t)δu(t)dt (25)

C. Iterative Optimization

1) Define the LQR Problem: Given the state and control
trajectories x̄ and ū, we can derive the linear formulation of
the objective (21) and linear robot dynamics (20). In each
iteration, we solve the following optimal control problem:

min
δx,δu

∆J (δx, δu) (26a)

+

∫ T

0

1

2
δxT (t)Qδ(t)δx(t) +

1

2
δuT (t)Rδ(t)δu(t)dt

s.t. ˙δx(t) = A(t)δx(t) +B(t)δu(t) (26b)
δx(0) = x0 − x̄(0) = 0 (26c)

where objective (26a) contains both linear and quadratic terms
with cost matrices Qδ(t) ∈ RNn×Nn, Rδ(t) ∈ RNm×Nm.
Eq. (26b) represents the linearized dynamics, and Eq. (26c)
ensures the state trajectory starts from x0, satisfying initial
condition (9c). This is a typical optimal control problem that
can be solved using Linear Quadratic Regulator (LQR) [39].

Algorithm 1 Iterative-MEC
1: Initialize: Linearization trajectory x̄, ū, multiplier µ(t).

Refer to Tab. I for other parameters.
2: for k = 1 to km do
3: δu← Using LQR to solve Problem (26) with

initial guess δx = 0, δu = 0
4: Using line search to get the ideal step size θ⋆

5: u← ū+ θ⋆ δu ▷ Update control trajectory
6: x← forward roll-out with control u under dynamics
7: if J(x̄, ū)− J(x, u) ≥ εµ then ▷ εµ ∈ R+

8: Update the multiplier µ(t) ▷ See (18)
9: else

10: Increase the penalty r = α̂r · r ▷ α̂r > 1
11: Decrease εµ = α̂µ · εµ ▷ 1 > α̂µ > 0

12: if Meet the termination criteria then
13: Return state and control trajectory x, u

14: x̄, ū← x, u ▷ Update linearized trajectory

2) Iterative Solving Approach: Alg. 1 outlines the iterative
solving approach. First, we initialize the multiplier using Eq.
(18) to identify active constraints in I(t), t ∈ [0, T ] (Line 1).
Note that the linearization trajectory x̄ is derived from the roll-
out process based on the given initial control trajectory ū and
the initial state x0. Then, based on current trajectories x̄, ū, we
linearize Problem (19) and apply LQR to solve Problem (26),
obtaining control deviations δu (Line 3). Next, we employ line
search to find a control u that decreases the objective (19b)
(Lines 4-5). The multiplier or penalty coefficient is updated
based on the convergence conditions (Lines 7-11). Finally,
we return the state and control trajectories x and u when
the termination criteria are satisfied. Otherwise, the current
state and control x̄, ū are updated (Line 14). In this paper, the
termination criteria are defined as |J(x̄, ū)− J(x, u)| ≤ 10−6

and the sum of inequality violations is less than 0.01.

D. Approximation for CIF

In Eq. (22), there exists a term lIx
(t) containing the partial

derivative of the CIF (6) with respect to the state x. However,
this function lacks smooth derivatives, which challenges the
trajectory optimization approach. A possible solution is to
approximate the CIF to obtain smooth derivatives. Let Γ(·, ·)
denote the approximated CIF. In this paper, the connection
area is represented as a sphere (or circle) centered at wi

with connection range Rc for robot i, formally defined as
S(wi) := ||w − wi||2 ≤ Rc, w ∈ W . We consider two
approximated CIFs, and their performance is discussed in Sec.
VII-B3.

• Gaussian CIF:

Γ(wi, wj) = exp

(
−||w

j − wi||22
rΓ · 2R2

c

)
(27)

• Sigmoid CIF:

Γ(wi, wj) =
1

1 + exp
(
rΓ

(
||wj−wi||22

R2
c

− 1
)) (28)



Here, rΓ > 0 is a hyper-parameter related to the magni-
tude of the gradient. For higher rΓ, the Sigmoid CIF (28)
provides steeper gradients than the Gaussian CIF (27) near
||wj−wi||2 = Rc. Therefore, the Sigmoid CIF can potentially
better represent the relationship between connection probabil-
ity and inter-robot distances. Besides, while the Gaussian CIF
provides a coarse approximation, it offers smoother gradients,
which can be important for nonlinear optimization in practice.
Finally, the approximated CIF’s shape can be adjusted via the
parameter rΓ, which is set to 1 for all CIFs in this paper.

VII. EXPERIMENTAL RESULTS

This section seeks to answer the following three categories
of questions. First, we examine the effect of the probabilistic
connectivity measure on the optimized trajectories over a finite
time horizon [0, T ] in practice. Specifically, we address the
following questions:

• Sec. VII-B1: How does increased connection probability
correlate with the actual connection time over [0, T ]?

• Sec. VII-B2: To what extent does maintaining higher
connection probability affect the information searching
performance measured by ergodicity?

• Sec. VII-B3: How different approximated CIFs Γ(·, ·) (as
discussed in Sec. VI-D) perform in practice?

Second, we explore how various hyper-parameters in the
MEC problem and our planning algorithm influence the re-
sulting trajectories. Specifically, we investigate:

• Sec. VII-C: What are the benefits of the sub-period
formulation, and how does the sub-period number affect
the optimized trajectories?

• Sec. VII-D: How does the horizon T influence the actual
connectivity, the robots’ trajectories, and the resulting
spatial distributions?

• Sec. VII-B, VII-C, VII-E: How does our method perform
in different information maps?

Third, we evaluate our method (using probabilistic con-
nection) in comparison to baseline approaches to understand
how different algorithms balance between ergodic search and
connectivity maintenance. Specifically, we investigate:

• Sec. VII-E: How does our probabilistic connectivity
maintenance approach compare to a method that encour-
ages all robots to stay connected at all times?

• Sec: VII-F: What are the pros and cons of proba-
bilistic connection versus several existing connectivity
maintenance strategies: enforcing periodic connectivity,
enforcing strict all-time connectivity, and no connectivity
requirement during the ergodic search?

Finally, we evaluate the scalability of our approach with
increasing numbers of robots in Sec. VII-G.

A. Experiment Settings

1) Parameters: In our experiments, each robot i has the
state xi(t) = (qi(t), vi(t)) and control input (acceleration or
force) ui(t) = (ui

1(t), u
i
2(t)), where qi(t) and vi(t) denote the

robot’s position and velocity in the workspace, respectively.

The robot dynamics is described as a double integrator model:
ẋi = (q̇i, v̇i) = (vi, ui). For robot i, the initial guess for
the control trajectory ui is set to zero input, i.e., ui = 0.
Given the initial state xi

0, the resulting state trajectory can then
be determined by forward simulation (i.e., rollout). All other
experimental parameters are summarized in Tab. I. Unless
explicitly stated otherwise, these parameters remain consistent
throughout all experiments.

2) Performance Indicators: In this section, we introduce
several indicators to evaluate the experimental results.

• Ergodicity E : Lower ergodicity means better information
gathering performance (Eq. (2)).

• Average Connection Ratio R̄c: R̄c measures the propor-
tion of time that robots are connected throughout the
entire time horizon T , which is calculated by:

R̄c = E(i,j)∈R
{
Et∈[0,T ]

{
1(||qi(t)− qj(t)||2 ≤ Rc)

}}
where E denotes the average operator and 1(·) is an
indicator function that returns 1 if the condition is true
and 0 otherwise.

• Average Connection Probability P̄c: P̄c is the average
connection probability (8) over all sub-periods.

P̄c = E(i,j)∈R
{
Ep∈Ip

{
Pc(q

i, qj ; tp, tp)
}}

B. Connection Probability

This section discusses the relationship between average
connection probability P̄c and two performance indicators:
average connection time R̄c (shown in blue) and ergodicity
E (shown in orange), as illustrated in Fig. 3. This test is
conducted across different information maps ϕ(w) (denoted
as Map 1-3) and employs both the Sigmoid and Gaussian
CIF. The additional experimental parameters are: robot number
N = 4, simulation steps NT = 300, and sub-period number

TABLE I
EXPERIMENT PARAMETERS

Symbols Value / Range Description
W [0, 3]× [0, 2.5] m Workspace
K [0, · · · , 10]× [0, · · · , 10] Frequency set

∆t, T 0.1 s, NT ∆t s Time step, horizon
R(t) diag(5, 5, · · · )× 10−3

Qδ(t) diag(.1, .1, 1, 1, · · · )× 10−3 Cost matrix
Rδ(t) diag(5, 5, · · · )× 10−3

rE , rc, ra 1.0, 0.1/εc, 0.1/(εa|R|) Cost coefficient
x0 / Initial state
u [−0.5,0.5] m/s2 Control saturation
Rc 0.5m Connection range
εa 0.3 m Avoidance limit (9e)
εc / Measure limit (9d)
N / Robot number
NT / Simulation steps
Np / Sub-Period number

µ(t), km 0, 2000

r, α̂r 1.0, 1.05 Parameters in Alg. 1
εµ, α̂µ 0.1, 0.95
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Fig. 3. The relationship between average connection probability P̄c (the horizontal axis) and two metrics (the left and right vertical axes): average connection
time ratio R̄c (blue data) and ergodicity E (orange data). The subfigure (I) uses the Sigmoid CIF, while the subfigure (II) uses the Gaussian CIF. Each column
corresponds to the same information distribution maps ϕ(w), denoted as Map 1,2, and 3.

Np = 3. The connection probability threshold in Eq (9d) is
set as εc ∈ [0.05, 0.5] with a step size of 0.05.

1) Connection Probability over Connection Ratio: As
shown by the blue data points in Fig. 3-(I, II), the experimen-
tal results reveal a positive correlation between the average
connection ratio R̄c and average connection probability P̄c

among the test instances. This correlation suggests that higher
connection probabilities tend to result in increased actual
connection time ratios between the robots. However, it is noted
that the blue dots in Fig. 3-(I, II) do not lie perfectly on the
same straight line, indicating that a higher P̄c does not always
correspond to a higher R̄c. This is not a surprise due to the
inherent probabilistic nature of the connection probability.

2) Connection Probability over Ergodicity: As shown by
the orange data points in Fig. 3-(I, II), the ergodicity E
increases (i.e., worsens) as the average connection probability
P̄c rises for most test instances. The reason is that with a
higher connection probability P̄c, the robots need to gather
together more frequently to establish the connection, which
prevents the robots from covering a widespread information
distribution and thus lowers the ergodicity.

3) CIF Approximation Methods Comparison: Comparing
subfigures (I) and (II) in Fig. 3, we observe that the Gaussian
CIF demonstrates slightly better (lower) ergodicity E and
corresponds to a similar average connection time P̄c. This

observation aligns with the discussions in Sec. VI-D4.

C. Sub-Period Experiments

1) Varying Sub-Period Numbers: In this sub-section, the
connection probability threshold is set to εc = 0.2. The
sub-period number Np takes values from the set Np ∈
{1, 2, 3, 4, 5, 6}

As shown in Fig. 4, as the sub-period number Np increases,
the average connection probability P̄c generally increases
(subfigure (a)), the average connection ratio R̄c increases
(subfigure (b)), and the ergodicity rises (subfigure (c)). A
possible reason is that, with a higher number of sub-periods,
the robots have to maintain a certain level of connection
probability in each sub-period. It makes the robots gather
together more frequently (i.e., P̄c and R̄c rise), which, in turn,
prevents the robots from ergodically covering the information
map (i.e., E increases).

2) Impact of Sub-Period Formulation: In this sub-section,
we set the number of robots to N = 2 and the connection
probability threshold to εc = 0.2. We compare the scenarios
of Np = 1 (with only one period) and Np = 3.

4In the following experiments, unless otherwise stated, the information
distribution is set to Map 1 under the fixed simulation steps NT = 300,
and the Gaussian CIF is used.
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As shown in Fig. 5-(I)-(b), when the connection probability
is constrained to be greater than εc over the entire time horizon
[0, T ] (Np = 1), the robot pairs lose connection during the
time range [0, 10] s, as the distance exceeds the connection
range Rc. In contrast, as shown in subfigure (II)-(b), with
Np = 3, the robots establish the connection when each sub-
period’s connection probability is constrained to be greater
than εc. The reason is that the sub-period formulation divides
the time horizon into intervals of shorter length. Unlike plan-
ning with the entire horizon [0, T ], which only considers the
spatial distribution over the entire horizon without considering
meeting “at the same time”, these shorter intervals are more
likely to make the robots reach certain locations “at the same
time” and thus achieve better connectivity. This approach

ensures connectivity within each sub-period, preventing long
disconnections.

Combined with the results in the previous sub-section, there
is a trade-off between ergodicity and connectivity: planning
with a large number of sub-periods tends to encourage better
connectivity and worse ergodicity, while having a smaller
number of sub-periods tends to encourage better ergodicity
and worse connectivity.

D. Planning Horizon

In this section, the parameters remain consistent with those
in Sec. VII-C2 (N = 2, Np = 1, εc = 0.2), and we fix the
sub-period number Np = 1 to study the impact of simulation
steps NT , which takes values NT ∈ {100, 200, 300, 400}.

As shown in Fig. 6, as the horizon increases, the trajec-
tory heatmaps of the two robots increasingly align with the
information map, resulting in a decrease in ergodicity (as
indicated by the orange data points in Fig. 7). This observation
is consistent with the definition of ergodic search. Notably, the
trajectories of the two robots do not merely search specific
(partial) peaks of the information distribution; rather, both
trajectories continuously encompass all peaks. This reflects
the role of the connection probability Pc, as we aim for the
robots to accomplish both the ergodic search task and maintain
probabilistic connectivity.

In the meanwhile, as shown in Fig. 7, the average connec-
tion time ratio R̄c decreases as NT increases. Compared with
Fig. 6-(IV), although the frequencies of the robots gathering
together at the same location increase, the robots go to the
same location at different times, which leads to a decreasing
R̄c. This indicates that as the horizon lengthens, achieving
the same level of connection probability becomes easier while
minimizing ergodicity. For example, this can be achieved
through rapid movement among information peaks, resulting
in the phenomenon of “meeting at the same location at
different times”.
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Fig. 6. The trajectories of two robots are illustrated in the first row (I), together with their corresponding heatmaps in the second (II) and third row (III). The
fourth row (IV) presents a heatmap depicting the regions visited by both robots throughout the entire planning horizon [0, T ].

E. Comparison with a Variant Approach

The definition of the connection probability (8) involves
a double integral of γ(qi(ti), qj(tj)) over time, where the
integrated variable q is associated with different time variables
ti and tj . For comparison, by considering trajectories q at the
same time variable, we can define the following variant:

P̃c(q
i, qj ; t0, tf ) =

1

tf − t0

∫ tf

t0

γ(qi(t), qj(t))dt (29)

Here, P̃c calculates the ratio of two robots’ connection time
within the interval [t0, tf ]. Note that, since both qi and qj

are related to the same time variable t, P̃c corresponds to the
case where the two robots i, j reach certain locations “at the

same time”, which differs from Pc in Eq. (8) that considers
the spatial distribution over the entire horizon.

With P̃c, we introduce a variant approach: we substitute
P̃c for Pc in Eq. (9d) of the MEC problem 3. The Gaussian
CIF (27) is used to approximate P̃c for optimization. We also
use Alg. 1 to solve the variant problem. Intuitively, this variant
approach encourages all robots to stay connected at all times
over each sub-period in a soft manner by considering the
variant connectivity constraint P̃c.

In this section, all parameters remain consistent with those
outlined in Sec. VII-B. As shown in Fig. 8, the experimental
results obtained using probabilistic connectivity as defined in
Eq. (8) achieve better ergodicity than this variant approach
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(about 0.65 times). Specifically, for ergodicity E , the blue
data points exhibit lower values. This demonstrates that prob-
abilistic connectivity provides greater flexibility in optimizing
the trajectories of the robots, while this variant approach
encourages all robots to stay connected at all times, which
can lead to poor ergodicity.

F. Comparison with Other Connection Policies

In this section, we set the parameters to N = 4, NT = 300,
and Np = 3, consistent with Sec. VII-B. We compare the
results obtained under different connection policies. Addition-
ally, we consider obstacles modeled as circles, defined by
their radius and center, denoted as OR and OC , respectively,
as illustrated in Fig. 9. Note that in practice, robots have a
physical volume, and we represent obstacles as inflated circles
surrounding the actual obstacle. The corresponding collision
avoidance constraint for the obstacles is defined as follows:

||qi(t)−OC ||2 ≥ OR,∀t ∈ [0, T ],∀i ∈ IN (30)

In this experiment, we consider two obstacles modeled by their
centers located at OC = (1.1, 1.5) m and OC = (1.9, 1.0) m,
with each obstacle having a radius of OR = 0.2 m. Here, our
IMEC considers the additional collision avoidance constraint
(30) with a threshold of εc = 0.25.

1) Against Baseline with Periodic Connection: We use
the concept of periodic connection in [17], and introduce a
baseline method that requires each pair of robots to gather
together at the end of each sub-period, specifically at times
10, 20, 30 s in our tests. The connection location selection is
to be determined by the planner. Specifically, this baseline
method solves the following optimization problem:

Problem 3without (9d) (31a)

s.t. ||qi(tp)− qj(tp)||2 ≤ Rc,∀p ∈ Ip, (i, j) ∈ R (31b)
(30)

As shown in Fig. 9, both methods satisfy the condition
of “achieving connection in each sub-period” (as shown in
subfigure (d)). The ergodicity achieved by our method is
E = 0.001987, while the baseline yields E = 0.009762, which

TABLE II
COMPARISON WITH STRICT ALL-TIME AND NO CONNECTIVITY

Ergodicity E
(Lower is better)

Avg. connection ratio
R̄c (Higher is better)

Robots connected
in all sub-periods?

B1 9.1× 10−3 0.70 False
B2 9.5× 10−5 0.21 False
Ours 2.0 × 10−3 0.29 True

is about 4x higher than our method. It shows the advantages
of probabilistic connectivity, as it allows the planner to select
connection locations and time more flexibly by only enforcing
a certain probability on establishing the inter-robot connection.

2) Against Baselines with Strict All-Time Connectivity and
Without Connectivity: Here we ran experiments with two
additional baselines: (B1) enforcing strict all-time connectivity
constraints during planning, and (B2) omitting connectivity
constraints entirely (i.e., robots only execute ergodic search).
All other experimental settings are consistent with those de-
scribed in Sec. VII-F. The corresponding results are presented
in Tab. II. B1 achieves the worst ergodic search performance
and the highest R̄c. In contrast, B2 achieves much better
(smaller) ergodicity at the cost of poor connectivity. Compared
with B1 and B2, our IMEC achieves moderate ergodicity while
maintaining connectivity among all robot pairs in all sub-
periods. It validates the adaptability of our proposed proba-
bilistic measure, which balances ergodicity with connectivity
maintenance. Note that B1 imposes many constraints, which
frequently leads to convergence to infeasible local minima
where some constraints are unsatisfied.

G. Scalability

To evaluate scalability, we tested 5 to 10 robots in a [0, 10]×
[0, 10]m workspace over a 100 s horizon (∆t = 1 s) using
a Gazebo-based simulator, Crazysim [40]. The information
distribution map is set to Map 1, as shown in Fig. 3-(I)-(a). Our
planner terminates when the sum of all constraint violations
falls below a threshold of 0.01. The runtimes for 5 to 10 robots
are {26.4, 36.4, 64.1, 102.3, 214.5, 221.9} s, respectively, on a
laptop (Intel i7-12700H). We observe that, as the number
of robots increases, the runtime also increases. A possible
reason is that inter-robot collision avoidance becomes more
challenging. Decentralized computation and real-time control
are needed to handle significantly larger robot teams.

H. Hardware Experiment

The hardware experiment is conducted following the results
using our IMEC presented in Sec. VII-F, using the Crazyflie
2.1 [41], Crazyswarm2 [42], ROS2 [43], and a motion capture
system. Each Crazyflie employs PID-based position control
to resist the effects of unmodeled dynamics and motion
disturbances. As shown in Fig. 10, the drones executed the
optimized trajectories, built connections intermittently, avoided
inter-agent collision and static obstacles, and searched the
information map ergodically. This experiment validates that
our IMEC can be applied to real robots in a lab setting.
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VIII. CONCLUSION AND LIMITATIONS

A. Conclusion

This paper studies multi-robot ergodic search with inter-
mittent connectivity maintenance. Unlike the existing work,
this paper proposes a novel probabilistic measure of inter-
robot connectivity based on the time-averaged statistics of the
robots’ trajectories. Based on the proposed measure, we for-
mulate the MEC problem and derive the optimal conditions for
the problem. We also develop IMEC, an iterative optimization
algorithm to solve the MEC problem based on the augmented

Lagrangian method and iterative LQR. The experiments verify
the effectiveness of the proposed measure and the proposed
planner in various information maps with varying parameters.
Finally, the proposed planner is deployed on a real multi-drone
system in a lab setting.

In particular, we observe from our results that, there is
a positive correlation between the probabilistic measure of
connectivity and the actual amount of connection time ratio
in practice. Furthermore, using this probabilistic measure in
ergodic search tends to give the planner more flexibility in
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Fig. 10. Hardware experiment setup and results. The experimental platform consists of four drones in a motion-capture environment. (a)-(c) Snapshots of the
drones executing the optimized trajectories during different sub-periods, demonstrating probabilistic connectivity maintenance during the ergodic search.

determining the location and time to build connections and
thereby allows the planner to intelligently balance between
ergodicity and connectivity maintenance in the long run.

B. Limitations

This paper implements the algorithm in Python, which often
takes a long runtime (sometimes more than a minute per run,
especially when using a long planning horizon) and is not
suitable for real-time on-board control. Combining it with
receding horizon approaches and C++ implementation can
potentially accelerate the computation and enable real-time
control. Additionally, this paper simplifies the communication
model as robots build connections and immediately complete
data exchange upon gathering within a certain meeting radius.
More realistic communication constraints, such as bandwidth
and line-of-sight requirements, would be valuable to consider.
Finally, the proposed planner is centralized in the sense that
all robots’ trajectories are available at any time. Future work
includes developing the decentralized IMEC planner.
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APPENDIX A
PROOFS

A. Symmetry Property

From Eq. (4) and (5), we can express:

P∞(qi, qj) = lim
T→∞

Pc(q
i, qj ; 0, T ) (32a)

= lim
T→∞

1

T 2

∫ T

0

∫ T

0

γ(qi(ti), qj(tj))dtjdti (32b)

The symmetry property of Eq. (4) can be shown by the
symmetry of the CIF (6). Under the bidirectional connec-
tivity assumption (Assumption 1) that qj(t) ∈ S(qi(t)) ⇔
qi(t) ∈ S(qj(t)), we can infer that γ(qi(ti), qj(tj)) =
γ(qj(tj), qi(ti)). This symmetry follows directly from the
bidirectional property that wj ∈ S(wi) implies wi ∈ S(wj).

B. Necessary Conditions of Optimality

Using the Hamiltonian (16), we can rewrite the Lagrange
Function (14) as follows:

L =
rE
2
sT (T )QKs(T ) (33)

+

∫ T

0

H(x, s, u, ρx, ρs, µ, t)− ρTx (t)ẋ(t)− ρTs (t)ṡ(t)dt

Here, the terminal cost term depends only on the auxiliary sys-
tem state s and does not depend on x. The Hamiltonian (16) is
a function of the variables x, s, u and the multipliers ρx, ρs, µ,
and the last two terms involve ρx, ρs and the derivatives ẋ, ṡ.

We can derive the optimality conditions by taking the total
variational derivative of Eq. (33) with respect to the states
x, s, control u, multipliers ρx, ρs, µ, and the derivatives ẋ, ṡ
as follows:

δL =
∂ rE

2 sT (T )QKs(T )

∂s(T )
δs(T ) +

∫ T

0

{
∇T

xHδx(t)

+∇T
s Hδs(t) +∇T

ρx
Hδρx(t) +∇T

ρs
Hδρs(t)

+∇T
µHδµ(t) +∇T

uHδu(t)− ẋT (t)δρx(t)

− ρTx (t)δẋ(t)− ṡT (t)δρs(t)− ρTs (t)δṡ(t)
}
dt (34)

Using integration by parts for ρTx (t)δẋ(t) and ρTs (t)δṡ(t) , we
can simplify Eq. (34) as follows:

δL =

(
∂ rE

2 sT (T )QKs(T )

∂s(T )
− ρTs (T )

)
δs(T )− ρTx (T )δx(T )

+

∫ T

0

{
(∇T

xH + ρ̇x
T (t))δx(t) + (∇T

s H + ρ̇s
T (t))δs(t)

+ (∇T
ρx
H − ẋT (t))δρx(t) + (∇T

ρs
H − ṡT (t))δρs(t)

+∇T
µHδµ(t) +∇T

uHδu(t)
}
dt

Let δL = 0, we can get the conditions as shown in Eqs. (17).
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