
Bi-Objective Search for the Traveling Salesman Problem
with Time Windows and Vacant Penalties

Shizhe Zhao1, Yancheng Wu1, Zhongqiang Ren1,2*

1UM-SJTU Joint Institute, Shanghai Jiao Tong University, China
2Department of Automation, Shanghai Jiao Tong University, China

{shizhe.zhao,wuyancheng,zhongqiang.ren}@sjtu.edu.cn

Abstract

This paper investigates a Traveling Salesman Problem with
Time Windows and Vacant Penalties (TSP-TW-VP), which
plans a path to service a set of machines at different loca-
tions within their respective time windows while minimiz-
ing two objective functions: the finish time and penalty for
machine vacancy. There is often no single solution that opti-
mizes both objectives simultaneously, and the problem thus
seeks the Pareto-optimal solutions. TSP-TW-VP generalizes
TSP-TW and is therefore NP-hard. To solve the problem, this
paper develops an algorithm called Search with Look-Ahead
Pruning (S-LAP) that is guaranteed to find all Pareto-optimal
solutions for TSP-TW-VP. S-LAP gains computational effi-
ciency by introducing a novel look-ahead pruning rule, and a
fast dominance checking method based on both the objective
functions and path history. Experimental results show that the
proposed look-ahead pruning and fast dominance can speed
up the search for 2-8 times over 4 different datasets.

Introduction
Given a complete graph, the Traveling Salesman Problem
with Time Windows (TSP-TW) seeks a tour for an agent to
service each machine located at a vertex of the graph within
a pre-specified time window and return to the initial vertex
(i.e., the depot), while minimizing the time to finish the tour,
i.e., makespan. This paper investigates TSP-TW with Vacant
Penalties (TSP-TW-VP), a variant of the TSP-TW, where
both makespan and penalties are considered as objectives.
Consider a mobile robot in a factory transporting parts to
load the machines, each with a time window constraint. In
addition to minimizing the makespan for the robot to ser-
vice all the machines, an additional goal is to maintain high
utilization rates of key machines, i.e., minimizing the to-
tal vacant time of these machines. These two objectives are
often competitive to each other, as keeping high utilization
rates of certain key machines may prolong the overall tour
to service all the machines. Fig. 1 shows an example. In the
presence of bi-objective, there is no single solution that opti-
mizes both the objectives at the same time, and the problem
instead seeks a set of Pareto-optimal solutions. A solution is

*Corresponding Author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A toy example of TSP-TW-VP. The arrows with
numbers indicate the minimum travel time between vertices.
s (or g) indicates the depot where the robot must start and
end at. v0, v1, and v2 are vertices representing locations of
machines that the robot needs to visit and serve. Each ma-
chine can only be served within a time window shown in
green. For simplicity, assume the service time of each ma-
chine is 0. v0 and v2 are two key vertices where a penalty
is incurred based on the starting time of the service. This
instance has two Pareto-optimal solutions: ⟨s, v2, v0, v1, g⟩
with makespan 29 and penalty 10; and ⟨s, v2, v1, v0, g⟩ with
makespan 25 and penalty 23, showing the trade-off between
makespan and penalty.

Pareto-optimal if one cannot improve one objective without
worsening another objective.

When the set of key machines is empty, TSP-TW-VP
becomes TSP-TW. TSP-TW is NP-complete (Savelsbergh
1985) and so is TSP-TW-VP. TSP-TW-VP is computation-
ally challenging: On the one hand, TSP-TW-VP inherits the
difficulty of TSP-TW about determining the servicing or-
der of machine subject to the time window constraints. On
the other hand, TSP-TW-VP suffers from large numbers
of Pareto-optimal paths as in many bi-objective problems.
In particular, with bi-objective, there exist multiple Pareto-
optimal paths from the starting vertex to any other vertices
and an algorithm has to properly maintain and compare these
paths during the computation.

We are not aware of any existing work on TSP-TW-VP,

so we start with a dynamic programming method for TSP-
TW (Dumas et al. 1995). In particular, our algorithm S-LAP
leverages our prior multi-objective search framework (Ren
et al. 2025) and develop new techniques to expedite the
search while guaranteeing find all Pareto-optimal solutions
for TSP-TW-VP. S-LAP iteratively expands paths from the
starting vertex to all other vertices in the graph until these
paths service all machines and end at the goal location. Dur-
ing the search, the planner leverages the time window con-
straints and the path costs for early pruning of infeasible and
unpromising paths using the notion of dominance (Cao et al.
2024; Zhao et al. 2025). Additionally, to address challenges
in TSP-TW-VP, two new ideas in S-LAP are proposed. First,
S-LAP introduces a new pruning rule that looks ahead to
prune a path if there is a future path that serves more ver-
tices without worsening the makespan, while ending with
the same successor vertex during the expansion. This new
look-ahead pruning rule is applicable to both TSP-TW and
TSP-TW-VP when minimizing the makespan. Second, in-
spired by the recent progress in multi-objective path plan-
ning (Hernández et al. 2023; Ahmadi et al. 2021; Ren et al.
2022), S-LAP introduces a new fast dominance checking
method based on both the cost vector and the path history
(i.e., the set of vertices that are serviced along that path).

We test S-LAP on 4 different datasets with ablation study.
The experimental results show that, the proposed look-ahead
pruning and fast dominance can individually speed up the
search for 2-4 times in different scenarios depending on the
number of vertices and the time window constraints, and the
two combined can speed up the search for 2-8 times.

Related Works
TSP is one of the most well-known NP-hard problems and
has been extensively studied (Desrosiers et al. 1995). TSP-
TW generalizes TSP by introducing the time window con-
straints at each vertex, within which that vertex must be ser-
viced by the agent. Methods to solve TSP and TSP-TW can
be roughly divided into exact (Fischetti, Salazar González,
and Toth 1997), approximation (Garg, Konjevod, and Ravi
2000) and unbounded sub-optimal (Johnson and McGeoch
2003), and this work focuses on exact algorithms that are
guaranteed to solve the problem to optimality. To solve TSP-
TW to optimality, various approaches were developed such
as integer programming (IP) (Langevin et al. 1993; Kara and
Derya 2015) and dynamic programming (DP) (Dumas et al.
1995; Mingozzi, Bianco, and Ricciardelli 1997; Kuroiwa
and Beck 2024), where DP is shown to often outperform
IP (Langevin et al. 1993) since the existence of time win-
dows allows DP to efficiently prune branches that will lead
to infeasible tours (Dumas et al. 1995). Most TSP-TW al-
gorithms minimize the tour length without incurring costs
when the agent waits at vertices to satisfy the time win-
dow constraints (Dumas et al. 1995; Ascheuer, Fischetti,
and Grötschel 2001; Pesant et al. 1998; Focacci, Lodi, and
Milano 2002), and only a few algorithms minimize the
makespan where the waiting time at vertices are also in-
cluded into the tour cost (Christofides, Mingozzi, and Toth
1981; Baker 1983; López-Ibáñez et al. 2013). This work
seeks to minimize the makespan as one of the objectives.

In the presence of multiple objectives, there are multiple
non-dominated paths from the starting vertex to any other
vertices in the graph, and efficiently maintaining and com-
paring these non-dominated paths (namely fast dominance
checking) during the search is a decisive factor for search
algorithms (Pulido, Mandow, and Pérez-de-la Cruz 2015).
Fast dominance checking techniques received attention re-
cently (Hernández et al. 2023; Ren et al. 2022; Mandow and
Pérez de la Cruz 2023), but mainly for the multi-objective
path planning (MOPP) problem that seeks a path from given
start to goal. For TSPs, when comparing two paths that reach
the same vertices, one has to compare not only the cost vec-
tor of the path, but also the path history (Cao et al. 2024), the
set of vertices that are serviced along the path. This work
leverages the fast dominance methods in MOPP (Pulido,
Mandow, and Pérez-de-la Cruz 2015; Hernández et al. 2023)
and further extends them to handle bi-objective TSPs.

Problem Formulation
Graph Let G = (V,C) denote a complete graph where
the vertex set V represents possible locations and cost matrix
C ∈ R|V |2

≥0 represents minimum travel cost between vertices.
Each vertex v ∈ V has a machine to be serviced by the robot,
and let s(v) ∈ R+ denote the service time required by the
robot at v ∈ V .

Constraints Machine at each vertex can only be served
once. Serving a machine at v doesn’t affect the graph
G, i.e., the vertex v can still be visited afterward. Let
(ta(v), tb(v)) ∈ R+ × R+ denote the time window for a
machine at vertex v ∈ V , within which the robot can service
the machine. In other words, the robot must start and finish
the service within the time window, which is referred to as
the time window constraint. Time window constraints apply
only to machine servicing, while vertices can be visited at
any time.

Vacant Penalty Let K ⊆ V denote the key machine set.
Servicing any machine vi ∈ K at time t yields a penalty
1p(vi) = t. Intuitively, p(vi) indicates the vacancy time in-
curred at key machine vi.

Path Let π = π(v1, vl) = {v1, v2, · · · , vl} denote a path
from vertex v1 to vl. Let tr(v) denote the makespan of v,
i.e., the service finishing time of v. The service starting time
at each vi+1 ∈ π(v1, vl) is either the starting time of the
time window at vi+1 or the arrival time, so the makespan of
vi+1 is:

tr(vi+1) = max{tr(vi)+C(vi, vi+1), t
a(vi+1)}+s(vi+1).

(1)
Let tr(π) denote the makespan of the path, which is the same
as the makespan of the last vertex in π, i.e., tr(π) = tr(vl).
Let p(π) =

∑
vi∈K∩π p(vi) denote the penalty of the path

π, and let g⃗(π) := (tr(π), p(π)) denote the cost vector of π.
A path is feasible if no time window constraint is violated.

1One can also define the penalty as the difference between the
service starting time and the starting time of time window, i.e., t−
ta(vi). This doesn’t change the solution as ta(v) is a constant for
all key vertices v ∈ K.

Definition 1. (Path Dominance) Given any two non-
identical paths π1(v1, vl) and π2(v1, vl), their correspond-
ing cost vectors are g⃗1 = (tr(π1), p(π1)) and g⃗2 =
(tr(π2), p(π2)) respectively. π1 strongly dominates π2 if
tr(π1) ≤ tr(π2), p1 ≤ p2 and g⃗1 ̸= g⃗2, denoted as g⃗1 ≺ g⃗2
(or π1 ≺ π2). Also, we call π1 weakly dominates π2 if
g⃗1 ≺ g⃗2 or g⃗1 = g⃗2, denoted as g⃗1 ⪯ g⃗2 (or π1 ⪯ π2).

TSP-TW-VP Let vo be the starting vertex and vd be the
ending vertex. Among all feasible paths from vo to vd,
the non-dominated subset of paths is called the Pareto-
optimal set. The goal of TSP-TW-VP is to find a maxi-
mal cost-unique Pareto-optimal set Π∗, where (i) each path
π(vo, vd) ∈ Π∗ is Pareto-optimal, (ii) along each path
π(vo, vd) ∈ Π∗, all vertices are serviced exactly once, and
(iii) any two paths in Π∗ have different cost vectors.

Method
Concepts and Notations
Definition 2. (Label) During the search, a label, defined by
a tuple l = (v, g⃗, B), represents a path πl = π(vo, v), which
can be reconstructed by iteratively following the parent la-
bels. Here, v ∈ V is the current vertex, B ⊆ V is the set of
serviced vertex along the path, including both key and non-
key vertices that are serviced, which is also referred to as the
path history. The vector g⃗ = (tr(πl), p(πl)) in a label is the
cost vector the current path πl. For convenience, in the re-
maining sections, we use v(l), g⃗(l) and B(l) to represent the
v, g⃗ and B component of l respectively. A label l is a target
label if v(l) = vd and B(l) = V . Labels l1, l2 are identical
if v(l1) = v(l2), g⃗(l1) = g⃗(l2), and B(l1) = B(l2).

Definition 3. (Lexical Order) For any pair of two-
dimensional cost vectors g⃗1 = (tr1, p1) and g⃗2 = (tr2, p2), g⃗1
is lexicographically smaller than g⃗2 if one of the following
two conditions holds: (i) tr1 < tr2 or (ii) tr1 = tr2∧p1 < p2. In
the case that tr1 = tr2 and p1 = p2 (i.e., g⃗1 = g⃗2), we break
tie arbitrarily.

For a vector, we use bracket to indicate the component in
the vector. E.g. g⃗[1] means the first component in vector g⃗.

Definition 4. (Transition) Given a label l = (u, g⃗, B), and
a vertex v, a transition generates a new label l′ = (v, g⃗′ , B ∪
{v}) from l with:

g⃗′ [1] = tr(v) = max{tr(u) + C(u, v), ta(v)}+ s(v)

g⃗′ [2] =

{
g⃗[2], if v /∈ K

g⃗[2] + (tr(v)− s(v)), if v ∈ K

During the search, there can be multiple labels at the same
vertex v, representing multiple path from vo to v. To com-
pare and prune these paths, we use the notion of dominance.
The existing dominance pruning techniques in MOPP are
not applied here since their dominance checking only con-
siders the cost vector, while our work requires further con-
sidering the path history.

Definition 5. (Label dominance) Let l1 = (v, g⃗1, B1) and
l2 = (v, g⃗2, B2) be two non-identical labels at the same ver-
tex v, l1 dominates l2 if:

Algorithm 1: Pseudocode for S-LAP
Require: vo, vd
1: lo ← (vo, (0, 0), ∅)
2: add lo into OPEN
3: Ftrunc(v)← ∅, ∀v ∈ V
4: F∗ ← ∅
5: while OPEN not empty do
6: l← pop from OPEN
7: if IsDominated(l) then
8: continue
9: Ftrunc(v(l))← UpdateFrontier(l)

10: if v(l) = vd and B(l) = V then ▷ l is a target label
11: F∗ ← F∗ ∪ {l}
12: continue
13: for i ∈ V \B(l) do
14: l′ ← Transition(l, i) ▷ Def. 4
15: if tr(i) ≥ tb(i) then
16: continue
17: if LookAhead(l′) then
18: continue ▷ Def. 6
19: if ∃j ∈ V/B(l′) s.t. tr(i) + C(i, j) > tb(j) then
20: continue ▷ PostCheck (Dumas et al. 1995)
21: parent(l′)← l
22: add l′ into OPEN
23: return BuildPath(F∗) ▷ Build Π∗ based on parent

• g⃗1 ≺ g⃗2 and B2 ⊆ B1, or;
• g⃗1 = g⃗2 and B2 ⊂ B1;

denoted as l1 ≺ l2. Similarly, we call l1⪯ than l2 if l1 ≺ l2
or l1 = l2.

Search with Look-Ahead Pruning (S-LAP)
We develop a best-first search approach as shown in Algo-
rithm 1. The search employs an OPEN list that prioritizes
labels by their g⃗ in non-decreasing lexical order. The search
starts with an initial label at vo (line 2), then repeatedly
pop out labels to generate new labels by transition, until the
OPEN is empty.

Multi-objective search often truncates the cost vectors for
fast dominance comparison, which is explained later. Let
Ftrunc(v) and F∗ denote the non-dominated truncated la-
bel set at vertex v and the Pareto-optimal solutions respec-
tively, which are initialized to empty sets (line 3 and 4). In
each iteration, IsDominated is applied to a popped out label
l (line 7). This procedure determines whether l is dominated
by existing frontiers at v(l). Then UpdateFrontier adds the
label l to F(v(l)). This procedure filters existing labels in
F(v(l)) that are dominated by l, before adding l to F(v(l)).
More details about IsDominated and UpdateFrontier will be
discussed in the next section.

For all generated labels, we ensure the time window con-
straints are satisfied (line 15). Then we perform pruning
strategies PostCheck (line 19) and LookAhead (line 17). Post
Check is an existing pruning technique (Dumas et al. 1995)
to ensure that, for the newly generated label l′, the future
transition from l′ to any unserviced vertices u /∈ B(l′) sat-
isfies the time window constraint at u. This simple checking
procedure is quick to conduct and was shown to be able to
speed up the search (Dumas et al. 1995), which is leveraged

Algorithm 2: IsDominated and UpdateFrontier
1: function ISDOMINATED(l)
2: for all i ∈ Ftrunc(v(l)) do
3: if g⃗[2](i) ≤ g⃗[2](l) and B(l) ⊂ B(i) then
4: return True
5: return False
6: procedure UPDATEFRONTIER(l)
7: filtered← ∅
8: for all i ∈ Ftrunc(v(l)) do
9: if g⃗[2](l) ≤ g⃗[2](i) and B(i) ⊂ B(l) then

10: filtered← filtered ∪ {i}
11: Ftrunc(v(l))← (Ftrunc(v(l)) ∪ {l} \ filtered)
12: return Ftrunc(v(l))

in S-LAP. LookAhead is a new pruning technique proposed
by this work, which will be discussed shortly.

Fast Dominance Checking
The size of F(v) for any v ∈ V may grow dramatically
during the search, causing costly dominance checking. To
address this problem, we adapted two techniques from the
existing works to our problem setting:

• Lazy dominance check (Hernández et al. 2023): instead
of eagerly running IsDominated after a new label is gen-
erated (Alg. 1, line 22), we run dominance checking after
a label is popped out (Alg. 1, line 6).

• Dimensionality reduction (DR) (Pulido, Mandow, and
Pérez-de-la Cruz 2015): given the fact that labels are
popped out in the lexical ordering, the first dimension
of cost vectors g⃗(l) of labels l that are expanded at the
same vertex v(l) must be monotonically non-decreasing.
Thus this dimension can be ignored in dominance check-
ing. Without the first component (i.e., makespan tr(π)),
the resulting truncated cost vector g⃗trunc becomes a
scalar (i.e., p(π)). Consequently, for dominance check-
ing, instead of iterating all vectors in F(v), only a subset
Ftrunc (which consists of non-dominated truncated vec-
tors) of F (which contains the non-dominated original
vectors) needs to be stored. Ftrunc is often much smaller
than F , which thus expedites the dominance checking.

Alg. 2 shows how we maintain Ftrunc with the help of
DR. In addition, the path history of two labels must be prop-
erly compared using the aforementioned label dominance.
The for-loops in IsDominated and UpdateFrontier (line 2
and 8) gets benefit from Ftrunc due to its smaller size. The
label l in UpdateFrontier is guaranteed to be non-dominated
(Alg. 1, line 9), and we use it to further filter existing labels
that are dominated by l before adding it to Ftrunc (line 11).

Now we illustrate how the DR speeds up the dominance
checking in our problem. Consider an instance as shown in
Fig. 2a. When K = ∅, and the search has generated set of
labels at v1:

• l1 = (v1, g⃗1 = (ta(v1), 0), B1 = {vo, v1});
• l2 = (v1, g⃗2 = (ta(v2), 0), B2 = {vo, v2, v1});
• · · · ;
• ln = (v1, g⃗n = (tn(vn), 0), Bn = {vo, vn, · · · , v1})

The labels are popped out in the order of g⃗i, i.e.,
l1, l2, · · · , ln. Note that even g⃗i ≺ g⃗j when i < j, li ̸≺ lj as
Bi ⊂ Bj . Consequently, without DR, we have to compare
the popped out label against all of them in F(v1). With the
DR, UpdateFrontier(l1) gives Ftrunc(v1) = {l1} . Then
UpdateFrontier(l2) removes l1 and adds l2, etc. After the
procedure UpdateFrontier(ln), Ftrunc(v1) stores only the
label ln. In all procedures, only one label is compared.
Remark 1. At Alg. 2 line 2 and 8, we can use data structure
like AVL-Tree to further speed up the checking and filter-
ing (Ren et al. 2022). Due to the overhead of the data struc-
ture, a linear search is efficient enough to process Ftrunc in
several existing datasets for TSP-TW-VP.
Remark 2. The DR technique poses requirements on the f-
vector of labels, which makes the heuristic design challeng-
ing, and we therefore do not use any heuristic in this work.
The following example illustrates the challenge. Given a set
of vertices V = {S, 0, 1, · · · , N}, let vo = vd = S. Assume
travel cost C(S, 0) = C(0, 1) = 1, and there is no time win-
dow constraint. Consider two labels generated at the vertex
0 during the search (assuming no penalty is applied at 0):
• l1 = (v = 0, g⃗ = [1, 0], B = {0}), representing a tour

from S to 0;
• l2 = (v = 0, g⃗ = [2, 0], B = {0, 1}), representing a tour

from S to 1 then 0;
Since l1 and l2 do not dominate each other (Def. 5), both
should be expanded. When the DR is applied, l1 must be
expanded before l2. Otherwise, since Trunc(l2) = (g⃗ =
[0], B = {0, 1})) dominates Trunc(l1) = (g⃗ = [0], B =
{0}), l1 will be pruned. Assume an admissible heuristic is
applied, and let h1 = [3, 0], and h2 = [1, 0] denote the un-
derestimated heuristic values of l1 and l2 respectively. Then
we have f(l1) = [1 + 3, 0], f(l2) = [2 + 1, 0]. When la-
bels are prioritized by the lexical order of their f-vectors, l1
will be expanded after l2, meaning that l1 will be pruned. To
ensure l1 is expanded earlier, the heuristic function needs ad-
ditional property besides the admissibility, possibly by con-
sidering the path history B, which is non-trivial.

Look Ahead Pruning (LAP)
When generating a label l′ from l, LAP checks whether the
newly generated label l′ is dominated (Def. 5) by another
label l′′ that may not be generated. If so, l′ will be not be
generated. More specifically:
Definition 6. (Look Ahead) Given a label lu = (u, g⃗u, Bu),
and its successor lv = (v, g⃗v, Bv), where v /∈ Bu and Bv =
Bu ∪ {v}. Then lv can be pruned if ∃m ∈ V \Bu, s.t.,

max{tr(u) + C(u,m), ta(m)}
+s(m) + C(m, v) ≤ ta(v)

(2)

Intuitively, it prunes a path where the agent waits at certain
vertex while there is enough time to make a detour to service
more vertices. We will prove the correctness of the pruning
at the end of this section.

Now, we illustrate how LAP effectively reduces the search
space. Consider a graph as shown in Fig. 2a. The graph has
a symmetric cost matrix for the minimum travel cost. The

(a) The graph has a symmetric cost matrix for the minimum travel
cost. For each vertex, the starting time of its time window is shown
in t-axis, and the end time is infinite. Arrows indicate the optimal
path of this instance when K = ∅.

(b) The search tree of instance in Fig. 2a. Triangles represent sub-
tree of a search node (i.e., label). Gray objects are pruned by LAP.

Figure 2: An example showcasing LAP.

costs of the edges are small enough so that one can always
start service at v with starting time ta(v), and ta(vo) <
ta(v1) < · · · < ta(vn) < ta(vd).

LAP for TSP-TW Assuming there is no key nodes, i.e.,
K = ∅, and the service time at each vertex is simply
zero. Here, the optimal tour is π = (vo, v1, . . . , vn, vd).
Fig. 2b shows the search tree of this instance, where all
gray nodes (v2, · · · , vn) and subtrees (T12, T1, T2, · · · , Tn)
can be pruned by LAP. For example, vo → v2 can be pruned
as max{tr(vo) + C(s, v1), t

a(v1)} + C(v1, v2) ≤ ta(v2),
so as its subtree T2. With the help of LAP, we only need to
generate n labels while the entire search space is O(n!).

LAP for TSP-TW-VP In the example above, the search
space can also be significantly reduced by dominance check-
ing, given that the penalty dimension is always 0 (i.e., K =
∅). However, dominance checking becomes less effective
when key nodes are present. For example, let K = {v1}, and
label ls12, ls2 represent the partial path {vo, v1, v2}, {vo, v2}
respectively. For ls12, the penalty at v1 is ta(v1), so

ls12 = (v2, (t
a(v2), t

a(v1)), {vo, v1, v2}).

Then ls2 = (v2, (t
a(v2), 0), {vo, v2}) would be generated if

LAP is not applied, because neither can dominate the other
according to Def. 5. This demonstrates that LAP can be
more effective in certain multi-objective settings. The result
section further discusses the scenarios where LAP or fast
dominance checking expedites the search.

Remark 3. Or-interchanges (Savelsbergh 1985) in lo-
cal search is similar to LAP. The difference is that Or-
interchanges is applied on an initial feasible solution to im-
prove it; while LAP is applied on a partial solution to prune
successors using dominance checking.

Theoretical Analysis
We first introduce redundant transition for the convenience
of analysis.
Definition 7. (Redundant Transition) For a label l =
(v, g⃗ = (tr(v), p), B), a transition from l to i ∈ B is redun-
dant if it generates a label at a previously serviced vertex:

li = (i, g⃗′ = (tr(v) + C(v, i) + w, p), B)

where w ≥ 0 indicates the waiting time before starting the
transition.
Clearly, any labels generated by a redundant transition can
not lead to a Pareto-optimal solution. We will prove a label
is unpromising by showing it is dominated by another label
that is generated by a redundant transition.
Lemma 1. Pruning a dominated label would never eliminate
a Pareto-optimal solution.

Proof. Let l1 = (v, g⃗1, B1), l2 = (v, g⃗2, B2) and l1≺ l2.
Consider any transition from l2 to i ∈ V \B2 that generates

li2 = (i, g⃗i2 = (tr2(i), p
i
2), B2 ∪ {i}).

We can apply the same transition on l1 and an additional
redundant transition to generate a label with the same
makespan as li2:

li1 = (i, g⃗i1 = (tr2(i), p
i
1), B1 ∪ {i})

We show that li1 ⪯ li2 always hold for all possible cases: (i)
i ∈ B1; (ii) i /∈ B1 and i /∈ K; (iii) i /∈ B1 and i ∈ K.

In case (i), i has been serviced, so the penalty pi1 remains
unchanged. Then we have pi1 = p(l1) ≤ pi2 and B(li2) ⊆
B(li1) = B(l1), meaning that li1 ⪯ li2;

In case (ii), i is an unserviced vertex but not a key node,
so the penalty is unchanged. Then we have, pi1 = p(l1) ≤ pi2
and B(li2) ⊆ B(li1) = B(l1) ∪ {i}, meaning that li1 ⪯ li2;

In case (iii), i is an unserviced key node, same penalty
would be applied on both li1 and li2. So we have p(l1)+△p ≤
p(l2)+△p and B(li2) ⊆ B(li1) = B(l1)∪{i}, meaning that
li1 ⪯ li2.

Therefore, for any successor l′ of l2, we can always gen-
erate a label from l1 that is no worse than l′. So pruning l2
would never eliminate any Pareto-optimal solution.

Lemma 2. Look Ahead Pruning never eliminates any
Pareto-optimal solution

Proof. Let Trans(l, v) denote the transition from label l to
vertex v. Given a label lu = (u, g⃗u, Bu), let lv denote the
label generated by Trans(lu, v), and lmv denote the label
generated by Trans(Trans(lu,m), v), where lu, lv,m sat-
isfy Eq. (2). There are two cases: (i) m /∈ K, and; (ii) m ∈
K. In the first case, g⃗(lv) = g⃗(lmv) and B(lv) ⊂ B(lmv),
so lmv ≺ lv . In the second case, for arbitrary sequence of
transitions from lv that reaches m, denoted as lmv , we can
apply the exactly same transition sequence on lmv , generat-
ing lmmv . Recall that m has been serviced from lmv , so that
the last transition of lmmv is a redundant transition that does
not increase the penalty. Then, we have tr(lmv) = tr(lmmv)
(Eq. (2)), B(lmv) = B(lmmv), and p(lmv) > p(lmmv), so

Figure 3: All instances from the four datasets. The shape
and color represents the dataset, the size of markers indicates
the number of nodes in an instance, and gray markers are
instances that S-LAP are unable to solve within 300s when
k = 0.

lmmv ≺ lmv . Therefore, any successor of lv that reaches m
is dominated. With Lemma 1, LAP never prunes a Pareto-
optimal solution.

Theorem 1. S-LAP can find all Pareto-optimal solutions.

Proof. Without DR and LAP, Alg. 1 is a regular multi-
objective search algorithm that systematically enumerates
all non-dominated paths from vo to vd while servicing all
vertices, and is complete and optimal (Hernández et al.
2023; Ren et al. 2022). During the search, S-LAP only
prunes dominated labels which cannot lead to Pareto-
optimal solutions (Lemma 1), and LAP never eliminates
Pareto-optimal solutions (Lemma 2), so S-LAP can find all
Pareto-optimal solutions.

Remark 4. Our method is not restricted to a complete
graph. For any finite graph, since servicing machines do
not affect the traversability of vertices, we can always pre-
compute the all-pair shortest distance. This preprocessing al-
lows our search to focus on scheduling (i.e., ”which machine
to serve next”) while ignoring path planning (i.e., ”how to
move from u to v”). Additionally, since travel cost and ser-
vice time (C and s) always appear together, many existing
works, e.g., (López-Ibáñez and Blum 2010), incorporate the
service time s(v) into the cost matrix by shortening tb(v) by
s(v) and increasing the cost of outgoing edge by s(v). In this
work, we denote the travel cost and service time separately,
as revisiting a serviced vertex is allowed (Def. 7).

Numerical Results
We tested S-LAP on four datasets: AFG (Ascheuer 1996),
Dumas (Dumas et al. 1995), SolomonPesant (Pesant et al.
1998) and SolomonPotvinBengio (Potvin and Bengio 1996).
Dumas has 135 symmetric instances (i.e., C(i, j) = C(j, i))
and is widely used in TSP-TW. AFG has 50 asymmetric
instances (i.e., C(i, j) may not be the same as C(j, i)).
SolomonPotvinBengio and SolomonPesant have 57 asym-
metric instances in total, and are very diverse in transition

Variant #Sol. Time (min) #Gen. (108)

Base 1258 122.7 24.77
FD 1266 52.0 (↓ 57%) 25.34 (↑ 2.3%)
LAP 1267 93.9 (↓ 23%) 4.57 (↓ 81.5%)
FD+LAP 1278 26.8 (↓ 78%) 4.83 (↓ 80.5%)

Table 1: Summary of all instances for all ks, there are 1446
instances in total (241 per k). The table shows the number of
solved instances (#Sol), total runtime (Time), and total label
generation (#Gen.). The differences to Base are shown in
parenthesis.

cost, time window tightness, and positioning of the time
windows (Solomon 1987).

To generate bi-objective instances, for a given k, we ran-
domly select k% of nodes from the input as key nodes. In all
experiments, we vary k ∈ [0, 20, · · · , 100] under a fixed ran-
dom seed, where k = 0 means solving the classic TSP-TW
that only minimizes makespan.

Two properties of time windows may affect the difficulty
of a TSP-TW instance for a search algorithm: (i) the length
of time windows (ltw) and (ii) the overlapped length of time
windows (otw). The higher the ltw, the looser the time win-
dow constraints are. Looser time windows make it hard for
a search algorithm to prune based on the time window con-
straints, and often increase the search space. For otw, con-
sider an extreme instance that has no overlapped time win-
dow, LAP would ensure all non-key vertices are serviced in
the order of their starting times, significantly reducing the
search space. So we anticipate that instances with lower otw
are easier. To estimate the difficulty of an instance, we mea-
sure the ltw and otw as follows:

• ltw: the mean of time window length divided by the mean
of edge length.

• otw: the mean of overlapped time window length divided
by the mean of edge length.

Fig. 3 shows all instances based on their ltw and otw. For
visualization purposes, we apply the min-max normalization
to map ltw and otw between 0 and 1.

We implemented S-LAP in C++ compiled with -O3 flag.
All experiments were run on a desktop with a 16-core i7-
13700 CPU and 32GB RAM on Ubuntu 22.04. The runtime
budget is 300 seconds per instance.

Ablation Study
In this experiment, we vary k, and examine the effectiveness
of Fast dominance and Look ahead pruning in S-LAP. The
following variants are derived from S-LAP:

• FD: apply the Fast dominance only;
• LAP: apply the Look ahead pruning only;
• Base: without neither Fast dominance nor Look ahead

pruning;

For clarity, we denote S-LAP as FD+LAP.
Table 1 shows FD+LAP obviously reduces the total run-

time and the total label generation over all instances. FD has

Figure 4: Speed-up factors compared to Base on fast instances (runtime < 1s).

(a) (b)

Figure 5: (a) Reduction of FD+LAP on generated labels compared to Base on fast instances (runtime < 1s); (b) Among fast
instances of FD+LAP, #entries reduction is 1.0− (|Ftrunc|/|F|), indicating the reduced comparisons in dominance checking.

generated slightly more labels than Base, even though FD
doesn’t impact label generation. The reason is that FD has
solved more instances, which generates more labels. For the
same reason, FD+LAP has more labels than LAP.

Now we demonstrate how each components impacts the
performance on different k values. We define the speed-up
factor of a variant (i.e., FD,LAP,FD+LAP) as the runtime of
Base divided by the runtime of the respective variant. The
speed-up distribution among fast instances (runtime < 1s)
and slow instances (runtime ≥ 1s) differs, hence we discuss
the results in separate.

Fig. 4 shows the distribution of speed-up for fast in-
stances compared to Base, and Fig. 5 shows the reduction
of FD+LAP on label generation and frontier size. LAP is
the main reason for the speed-up, and the overall trend of k
follows the label generation reduction as shown in Fig. 5a.
This indicates the main benefit of these instances stem from
the reduction in labels. The reason is F is often small and
the overhead on dominance checking has minor influence.

Fig. 6 shows the distribution of speed-up for slow in-
stances compared to Base, and Fig. 7 shows the reduction of
FD+LAP on label generation and frontier size. We can see
that FD becomes the primary contributor, excluding Dumas.
The influence of FD diminishes as k increases, while the
impact of LAP intensifies. This trend is consistent with #en-
tries reduction of F as shown in Fig. 7b. This implies that
the significant component of runtime is dominance check-

ing. This outcome is due to the generation of more labels
in these instances, which increases the size of F . Addition-
ally, as k increases, labels are less likely be filtered (Alg 2,
line 10) because the penalty becomes more complicated as
the number of key vertices increases.

Compare with TSP-TW Solvers
In this experiment, we fix k = 0, where TSP-TW-VP degen-
erates to TSP-TW and the goal is to minimize the makespan
of the tour. We compare our S-LAP against two recent state-
of-the-art solvers that can minimize makespan (as opposed
to minimizing path length) for TSP-TW (denoted as TSP-
TW-makespan problem):
• Peel-and-Bound (PnB) (Rudich, Cappart, and Rousseau

2023). PnB is based on the decision diagram. It can
generate stronger bound compared to the branch-and-
bound methods, and outperforms them in terms of run-
ning speed.

• ACS+ (Fontaine, Dibangoye, and Solnon 2023). ACS+
is a variant of A∗ and combines a variety of techniques,
including constraint propagation and local search.

We sort the instances by their runtime from the minimum
to the maximum, and then show the cumulative runtime of
the instances in Fig. 8. Initially, S-LAP is orders of magni-
tude faster than its competitors in solving the same number
of instances, which demonstrates the runtime benefit of em-
ploying LAP and FD in the search.

Figure 6: Speed-up factors compared to Base on slow instances (runtime ≥ 1s)

(a) (b)

Figure 7: (a) Reduction of FD+LAP on generated labels and entries compared to Base on fast instances (runtime ≥ 1s); (b)
Among slow instances of FD+LAP, #entries reduction is 1.0−|Ftrunc|/|F|, indicating the reduced comparisons in dominance
checking.

Figure 8: Compare with SOTA solvers on the TSP-TW-
makespan. Given 300s runtime budget, S-LAP, PnB and
ACS+ solved 223, 206 and 236 instances out of 241, respec-
tively.

However, as the number of instances increases, the advan-
tage of S-LAP diminishes and it is eventually outperformed
by ACS+. Furthermore, S-LAP solved less number of in-
stances than ACS+ (223 v.s. 236). When the time budget was
extended to 1 hour, it was observed that both competitors
could solve all 241 instances, while S-LAP still failed on the
same ones. This may due to the lack of heuristic guidance,
and the lack of additional techniques such as constraint prop-
agation and local search as in ACS+, which leads the search

in S-LAP explore the more search space. This observation
also points out the possible future work directions.

Conclusion
This work studies a new problem TSP-TW-VP. The pro-
posed method, S-LAP, adapts the dimensionality reduction
technique from MOPP to reduce the overhead on dominance
checking, and employs a new pruning strategy called look-
ahead pruning to avoid generating unpromising labels dur-
ing the search. Experimental results show that the ideas of
fast dominance checking and look ahead pruning in S-LAP
can reduce runtime up to 78% and memory consumption
(measured by the number of generated labels) up to 80% for
instances in several datasets. In the TSP-TW problem (i.e.,
when there is no key vertices in TSP-TW-VP), compared to
the recent state-of-the-art solvers, S-LAP has smaller run-
time on solved instances, but still needs further investigation
to handle hard instances.

Acknowledgements
This work was supported by the Natural Science Foundation
of Shanghai under Grant 24ZR1435900, and the Natural Sci-
ence Foundation of China under Grant 62403313.

References
Ahmadi, S.; Tack, G.; Harabor, D. D.; and Kilby, P. 2021.
Bi-objective Search with Bi-directional A*. In Proceedings

of the International Symposium on Combinatorial Search,
volume 12, 142–144.
Ascheuer, N. 1996. Hamiltonian path problems in the on-
line optimization of flexible manufacturing systems. Ph.D.
thesis.
Ascheuer, N.; Fischetti, M.; and Grötschel, M. 2001. Solv-
ing the asymmetric travelling salesman problem with time
windows by branch-and-cut. Mathematical programming,
90: 475–506.
Baker, E. K. 1983. An exact algorithm for the time-
constrained traveling salesman problem. Operations Re-
search, 31(5): 938–945.
Cao, C.; Xu, J.; Zhang, J.; Choset, H.; and Ren, Z. 2024.
Heuristic Search for the Orienteering Problem with Time-
Varying Reward. In Proceedings of the International Sym-
posium on Combinatorial Search, volume 17, 11–19.
Christofides, N.; Mingozzi, A.; and Toth, P. 1981. State-
space relaxation procedures for the computation of bounds
to routing problems. Networks, 11(2): 145–164.
Desrosiers, J.; Dumas, Y.; Solomon, M. M.; and Soumis, F.
1995. Chapter 2 Time constrained routing and scheduling.
In Network Routing, volume 8 of Handbooks in Operations
Research and Management Science, 35–139. Elsevier.
Dumas, Y.; Desrosiers, J.; Gelinas, E.; and Solomon, M. M.
1995. An optimal algorithm for the traveling salesman prob-
lem with time windows. Operations research, 43(2): 367–
371.
Fischetti, M.; Salazar González, J. J.; and Toth, P. 1997.
A branch-and-cut algorithm for the symmetric generalized
traveling salesman problem. Operations Research, 45(3):
378–394.
Focacci, F.; Lodi, A.; and Milano, M. 2002. A hybrid exact
algorithm for the TSPTW. INFORMS journal on Comput-
ing, 14(4): 403–417.
Fontaine, R.; Dibangoye, J.; and Solnon, C. 2023. Exact and
anytime approach for solving the time dependent traveling
salesman problem with time windows. Eur. J. Oper. Res.,
311(3): 833–844.
Garg, N.; Konjevod, G.; and Ravi, R. 2000. A polyloga-
rithmic approximation algorithm for the group Steiner tree
problem. Journal of Algorithms, 37(1): 66–84.
Hernández, C.; Yeoh, W.; Baier, J. A.; Zhang, H.; Suazo,
L.; Koenig, S.; and Salzman, O. 2023. Simple and efficient
bi-objective search algorithms via fast dominance checks.
Artificial intelligence, 314: 103807.
Johnson, D. S.; and McGeoch, L. A. 2003. 8. The travel-
ing salesman problem: a case study, 215–310. Princeton:
Princeton University Press. ISBN 9780691187563.
Kara, I.; and Derya, T. 2015. Formulations for minimiz-
ing tour duration of the traveling salesman problem with
time windows. Procedia Economics and Finance, 26: 1026–
1034.
Kuroiwa, R.; and Beck, J. C. 2024. Parallel Beam Search Al-
gorithms for Domain-Independent Dynamic Programming.
20743–20750. AAAI Press.

Langevin, A.; Desrochers, M.; Desrosiers, J.; Gélinas, S.;
and Soumis, F. 1993. A two-commodity flow formulation
for the traveling salesman and the makespan problems with
time windows. Networks, 23(7): 631–640.
López-Ibáñez, M.; and Blum, C. 2010. Beam-ACO for the
travelling salesman problem with time windows. Comput.
Oper. Res., 37(9): 1570–1583.
López-Ibáñez, M.; Blum, C.; Ohlmann, J. W.; and Thomas,
B. W. 2013. The travelling salesman problem with time win-
dows: Adapting algorithms from travel-time to makespan
optimization. Appl. Soft Comput., 13(9): 3806–3815.
Mandow, L.; and Pérez de la Cruz, J.-L. 2023. Improving
Bi-Objective Shortest Path Search with Early Pruning. ECAI
2023, 1680–1687.
Mingozzi, A.; Bianco, L.; and Ricciardelli, S. 1997. Dy-
namic programming strategies for the traveling salesman
problem with time window and precedence constraints. Op-
erations research, 45(3): 365–377.
Pesant, G.; Gendreau, M.; Potvin, J.-Y.; and Rousseau, J.-M.
1998. An exact constraint logic programming algorithm for
the traveling salesman problem with time windows. Trans-
portation Science, 32(1): 12–29.
Potvin, J.-Y.; and Bengio, S. 1996. The vehicle routing prob-
lem with time windows part II: genetic search. INFORMS
journal on Computing, 8(2): 165–172.
Pulido, F.-J.; Mandow, L.; and Pérez-de-la Cruz, J.-L. 2015.
Dimensionality reduction in multiobjective shortest path
search. Computers & Operations Research, 64: 60–70.
Ren, Z.; Hernández, C.; Likhachev, M.; Felner, A.; Koenig,
S.; Salzman, O.; Rathinam, S.; and Choset, H. 2025.
EMOA*: A framework for search-based multi-objective
path planning. Artificial Intelligence, 339: 104260.
Ren, Z.; Zhan, R.; Rathinam, S.; Likhachev, M.; and Choset,
H. 2022. Enhanced multi-objective A* using balanced bi-
nary search trees. In Proceedings of the International Sym-
posium on Combinatorial Search, volume 15, 162–170.
Rudich, I.; Cappart, Q.; and Rousseau, L. 2023. Improved
Peel-and-Bound: Methods for Generating Dual Bounds with
Multivalued Decision Diagrams. J. Artif. Intell. Res., 77:
1489–1538.
Savelsbergh, M. W. 1985. Local search in routing problems
with time windows. Annals of Operations research, 4: 285–
305.
Solomon, M. M. 1987. Algorithms for the vehicle routing
and scheduling problems with time window constraints. Op-
erations research, 35(2): 254–265.
Zhao, S.; Nandy, A.; Choset, H.; Rathinam, S.; and Ren, Z.
2025. Heuristic Search for Path Finding With Refuelling.
IEEE Robotics and Automation Letters, 10(4): 3230–3237.

