
1

C∗: A New Bounding Approach for the
Moving-Target Traveling Salesman Problem

Allen George Philip1, Zhongqiang Ren2, Sivakumar Rathinam1, and Howie Choset3

Abstract—We introduce a new bounding approach called
Continuity* (C∗), which provides optimality guarantees for the
Moving-Target Traveling Salesman Problem (MT-TSP). Our
approach relaxes the continuity constraints on the agent’s tour
by partitioning the targets’ trajectories into smaller segments.
This allows the agent to arrive at any point within a segment
and depart from any point in the same segment when visiting
each target. This formulation enables us to pose the bounding
problem as a Generalized Traveling Salesman Problem (GTSP)
on a graph, where the cost of traveling along an edge requires
solving a new problem called the Shortest Feasible Travel (SFT).
We present various methods for computing bounds for the SFT
problem, leading to several variants of C∗. We first prove that
the proposed algorithms provide valid lower-bounds for the MT-
TSP. Additionally, we provide computational results to validate
the performance of all C∗ variants on instances with up to 15
targets. For the special case where targets move along straight
lines, we compare our C∗ variants with a mixed-integer Second
Order Conic Program (SOCP) based method, the current state-
of-the-art solver for the MT-TSP. While the SOCP-based method
performs well on instances with 5 and 10 targets, C∗ outperforms
it on instances with 15 targets. For the general case, on average,
our approaches find feasible solutions within approximately 4.5%
of the lower-bounds for the tested instances.

I. INTRODUCTION

The Traveling Salesman Problem (TSP) is one of the most
important problems in optimization with several applications
including unmanned vehicle planning [1]–[4], transportation
and delivery [5], monitoring and surveillance [6], [7], disaster
management [8], precision agriculture [9], and search and
rescue [10], [11]. Given a set of target locations (or targets)
and the cost of traveling between any pair of targets, the TSP
aims to find a shortest tour for a vehicle to visit each of
the targets exactly once. In this paper, we consider a natural
generalization of the TSP referred to as the Moving Target-
TSP (MT-TSP) where the targets are mobile and traverse
along known trajectories (refer to Fig. 1). Specifically, given
a set of targets S, where each target i ∈ S moves at a
constant speed vi ≥ 0 along a known trajectory πi, MT-
TSP aims to find a trajectory for a vehicle that starts and
ends at a depot and travels at a maximum speed v, such
that it intercepts all the targets in the shortest possible time.
This generalization is motivated by applications including
monitoring and surveillance [12]–[15], missile defense [16]–
[18], fishing [19], [20], human evacuation [21], and dynamic

1. Allen George Philip and Sivakumar Rathinam are with Texas A&M
University, College Station, TX 77843, USA.

2. Zhongqiang Ren is with Shanghai Jiao Tong University, 800 Dongchuan
Road, Shanghai, China.

3. Howie Choset is with Carnegie Mellon University, 5000 Forbes Ave.,
Pittsburgh, PA 15213, USA.

Fig. 1: A feasible solution for an instance of the MT-TSP with
four targets. The blue lines shows the path of the vehicle. Also,
the colored solid segments for each target indicates the part
of its trajectory corresponding to its time-windows when the
vehicle can visit the target.

target tracking [22], where vehicles are required to visit or
monitor a set of mobile targets. The focus of this paper is on
the optimality guarantees for the MT-TSP.

Targets are typically assumed to move at a speed equal to
or slower than the agent’s speed since the agent is anticipated
to visit or intercept each target [16]. When the speed of
every target is equal to 0, the Moving-Target Traveling Sales-
man Problem (MT-TSP) simplifies to the standard Euclidean
Traveling Salesman Problem (ETSP). Therefore, MT-TSP is
a generalization of the ETSP and is NP-Hard. In addition,
the MT-TSP considered in this paper includes time-window
constraints for visiting the targets. These additional constraints
make the problem even more challenging, as finding a feasible
solution to the TSP with time-window constraints is NP-
Complete, even for stationary targets [23]. Unlike the TSP
which has been extensively studied, the current literature on
MT-TSP is limited.

A. Literature Review

Exact and approximation algorithms are available in the
literature for some special cases of the MT-TSP where the
targets are assumed to move along straight lines with constant
speeds on a 2D plane. In [24], Chalasani and Motvani propose
a (5(1 + v)/3(1 − v))-approximation algorithm for the case

2

where all the targets move in the same direction with the
same speed v. Hammar and Nilsson [25], also present a
(1+(ϵ/(1−v))-approximation algorithm for the same case. If
the targets can move at different speeds in arbitrary directions
on a 2D plane, they also show that the MT-TSP cannot be
approximated better than a factor of 2Ω(

√
n) by a polynomial

time algorithm (unless P = NP), where n is the number
of targets. In [16], Helvig et al. develop an exact O(n)-time
algorithm for the case when the moving targets are restricted
to a single line (SL-MT-TSP). Also, for the case where most
of the targets are static and at most O(log(n)/log(log(n)))
targets are moving out of the n targets, they propose a (2+ϵ)-
approximation algorithm. An exact algorithm is also presented
[16] for the MT-TSP with resupply where the agent must
return to the depot after visiting each target; here, the targets
are assumed to be far away from the depot or slow, and move
along lines through the depot, towards or away from it. In [17],
Stieber, and Fügenschuh formulate the MT-TSP as a mixed-
integer Second Order Conic Program (SOCP) by relying on
the key assumption that the targets travel along straight lines.
Also, multiple agents are allowed, agents are not required to
return to the depot, and each target has to be visited exactly
once within its visibility window by one of the agents. Optimal
solutions to the MT-TSP are then found for this special case.
Recently, we have also developed a new formulation [26] for
a special case when the targets travel along straights lines
and the objective is to minimize the distance traveled by the
agent; this paper on the other hand deals with minimizing
travel time for a generalization of the MT-TSP with multiple
time-windows.

Apart from the above methods that provide optimality guar-
antees to some special cases of the MT-TSP, feasible solutions
can be obtained using heuristics as shown in [12]–[14], [18],
[19], [21], [22], [27]–[30]. However, these approaches do not
show how far the feasible solutions are from the optimum.

A few variants of the MT-TSP and related problems have
also been addressed in the literature. In [31], Hassoun et al.
suggest a dynamic programming algorithm to find an optimal
solution to a variant of the SL-MT-TSP where the targets move
at the same speeds and may appear at different times. Masooki
and Kallio in [15] address a bi-criteria variant of the MT-TSP
where the number of targets vary with time and their motion
is approximated using (discontinuous) step functions of time.

B. Our work and contributions

In this article, we consider a variant of the MT-TSP where
each target moves along piecewise-linear segments or Dubins
[32] curves. Each target may also be associated with time-
windows during which the vehicle must visit the target. When
targets move along generic trajectories, such as those consid-
ered in this paper, no algorithms currently exist for finding the
optimum to the MT-TSP. When optimal solutions are difficult
to obtain, one can develop algorithms that can find feasible
solutions which provide upper bounds, and lower-bounding
algorithms that provide tight underestimates to the optimum.
Optimality guarantees can then be obtained by comparing the
upper and lower-bounds.

One way to generate feasible solutions to this problem is
to sample a discrete set of times from the (planning) time
horizon, and then consider the corresponding set of locations
for each target; given a pair of targets and their sampled times,
one can readily check for feasibility of travel and compute
the travel costs between the targets. A solution can then be
obtained for the MT-TSP by posing it as a Generalized TSP
(GTSP) [33] where the objective is to find an optimal TSP
tour that visits exactly one (sampled) location for each target.
While this approach can produce feasible solutions and upper-
bounds, it may not find the optimum or lower-bounds for the
MT-TSP. Therefore, we seek to develop methods that primarily
focus on finding tight lower-bounds in this paper.

In the special case where each target travels along a straight
line, the SOCP-based formulation in [17] can be used to
find the optimum. For the general case where each target
travels along a trajectory made of piecewise-linear segments
or Dubins curves, currently, we do not know of any method
in the literature that can find the optimum or provide tight
lower-bounds to the optimum for the MT-TSP. In this article,
we develop a new approach called Continuity* (C∗) to answer
this question.

C∗ relies on the following key ideas. First, we relax the
continuity of the trajectory of the agent and allow it to be
discontinuous whenever it reaches the trajectory of a target.
We do this by partitioning the trajectory of each target into
smaller intervals 1 and allow the agent to arrive at any point in
an interval and depart from any point from the same interval.
We then construct a graph G where all the nodes (intervals)
corresponding to each target are grouped into a cluster, and
any two nodes belonging to distinct clusters is connected by
an edge. Next, the cost of traveling any edge is obtained by
solving a Shortest Feasible Travel (SFT) problem between two
intervals corresponding to distinct targets. Specifically, given
two distinct targets i and j, and parts of their trajectories, π̄i

and π̄j , corresponding to two intervals, the SFT problem aims
to find a time ti to depart from π̄i and feasibly reach π̄j at
time tj such that tj − ti is minimized.

Once all the travel costs are computed, we formulate a
Generalized TSP (GTSP) [33] in G which aims to find a
tour such that exactly one node from each cluster is visited
by the tour and the sum of the costs of the edges in the
tour is minimum. We then show that our approach provides
lower-bounds for the MT-TSP. As the number of partitions or
discretizations of each target’s trajectory increases, the lower-
bounds get better and converge to the optimum.

In addition to solving the SFT problem to optimality for
targets moving along piecewise-linear segments, we also pro-
vide three simple and fast methods for computing bounds to
the cost of an edge in G for more generic target trajectories. In
this way, we develop several variants of C∗. We also show how
feasible solutions can be constructed from the lower-bounds,
though this may not be always possible2 if challenging time-

1Since each target travels at a constant speed, distance traveled along the
trajectory has one to one correspondence to the time elapsed.

2If tight time-window constraints are present, finding feasible solutions is
difficult in any case, whether we use C∗ or not.

3

window constraints are present.
We provide extensive computational results to corroborate

the performance of the variants of C∗ for instances with up to
15 targets. For the special case where targets travel along lines,
we compare our C∗ variants with the SOCP-based method,
which is the current state-of-the-art solver for MT-TSP. While
C∗ provides similar bounds compared to the SOCP-based
method for all cases, C∗ is an order of magnitude faster relative
to the SOCP-based method for instances with 15 targets. For
the general case, on average, our approaches find feasible
solutions within ≈ 4.5% of the lower-bounds for the tested
instances.

II. PROBLEM DEFINITION

Let S := {s1, s2, · · · , sn} be the set of targets. All the
targets and the agent move in a 2D Euclidean plane. Each
target i ∈ S moves at a constant speed vi ≥ 0, and follows a
continuous trajectory πi. In this paper, πi is piecewise-linear
(made of a finite set of line-segments) or a Dubins curve (made
of circular arcs of a given turning radius and line-segments).
Consider an agent that moves at a speed no greater than vmax

at any time instant. There are no other dynamic constraints
placed on the motion of the agent. The agent starts and ends
its path at a location referred to as the depot. We assume
vmax > vi for all i ∈ S. Also, any target i ∈ S is associated
with a set of k time-windows [ti,1, ti,1], · · · , [ti,k, ti,k] during
which times the agent can visit the target. The objective of the
MT-TSP is to find a tour for the agent such that

• the agent starts and ends its tour at the depot d,
• the agent visits each target i ∈ S exactly once within one

of its specified time-windows [ti,1, ti,1], · · · , [ti,k, ti,k],
and

• the travel time of the agent is minimized.

III. NOTATIONS AND DEFINITIONS

A trajectory-point for a target i ∈ S is denoted by πi(t)
and represents the position occupied by target i at time t.
A trajectory-interval for a target i is denoted by πi[ti, ti],
and refers to the set of all the positions occupied by i over
the time interval [ti, ti], where ti ≤ ti. In the special case
when ti = ti, πi[ti, ti] reduces to a trajectory-point and can
be written as just πi(ti). Suppose the time interval [ti, ti] lies
within another time interval [ti,1, ti,1] (i.e. [ti, ti] ⊆ [ti,1, ti,1]).
Then, πi[ti, ti] is said to be a trajectory-sub-interval that lies
within the trajectory-interval πi[ti,1, ti,1].

A travel from πi(t) to πj(t
′) denotes the event where the

agent departs from πi(t) at time t, and arrives at πj(t
′) at time

t′. This is the same as saying the agent departs from target i
at time t and arrives at target j at time t′. For travel from the
depot d to πi(t), the agent departs from d at time td = 0, and
for travel from πi(t) to d, the agent arrives at d at some time
td ≥ t.

A travel is feasible if the agent can complete it without
exceeding its maximum speed vmax. Clearly, feasible travel
requires the arrival time to be greater than or equal to
the departure time. We define a feasible travel exists from
some trajectory-interval πi[ti, ti] to another trajectory-interval

πj [tj , tj], if there exists some t ∈[ti, ti] and some t′ ∈[tj , tj]
such that the travel from πi(t) to πj(t

′) is feasible. We also
define a feasible travel exists from a trajectory-point πi(ti) to
a target trajectory πj , if there exists some t ≥ 0 such that
travel from πi(ti) to πj(t) is feasible. Feasible travels from a
trajectory to a trajectory-point or feasible travels to and from
a depot can be defined similarly.

Now, we define the following optimization problems be-
tween any two targets i and j which we need to solve as part
of our approach to the MT-TSP:

• Shortest Feasible Travel (SFT) problem from the
trajectory-interval πi[ti, ti] to the trajectory-interval
πj [tj , tj]:

– mint,t′ (t′ − t) where t ∈ [ti, ti], t′ ∈ [tj , tj], and
travel from πi(t) to πj(t

′) is feasible.

• Earliest Feasible Arrival Time (EFAT) problem from
the trajectory-point πi(ti) to the trajectory πj:

– min t such that t ≥ 0 and the travel from πi(ti) to
πj(t) is feasible.

The optimal time (also referred to as EFAT) to the
above problem is denoted as E(ti). In other words, after
departing from πi(ti), the agent can reach target j at the
earliest at the trajectory-point πj(E(ti)).

• Latest Feasible Departure Time (LFDT) problem from
a trajectory πi to a trajectory-point πj(tj):

– max t such that t ≥ 0 and the travel from πi(t) to
πj(tj) is feasible.

The optimal time (also referred to as LFDT) to the above
problem is denoted as L(tj). In other words, if the agent
needs to arrive at πj(tj), the latest position it must depart
from on πi is πi(L(tj)).

IV. C∗ ALGORITHM

The following are the three key steps in the C∗ Algorithm.
These steps are also illustrated in Fig. 2.

1) Partition the time-windows corresponding to each
target: The time-windows corresponding to each
target in S is first partitioned into smaller intervals3

of a given size (say ∆). This partitioning step results
in a cluster of trajectory-intervals corresponding to
each target as shown in Fig. 2a. Henceforth, each
trajectory-interval in any of these clusters is also
referred to as a node. Also, the cluster of nodes
corresponding to the target i ∈ S is denoted as Ci. In
the next step, we will construct a graph using these
nodes and relax the continuity of the agent’s path when
it reaches any one of the nodes corresponding to a target.

2) Construct a graph G with travel costs: The graph
G we construct is defined over the depot and the
nodes in Ci, i ∈ S. Any two nodes p, q in G are

3Here, without loss of generality, we assume that each time-window
corresponding to a target is an integer multiple of ∆.

4

(a) Partition the time-windows to create a cluster of
trajectory-intervals for each target.

(b) Construct a graph built on the clusters of trajectory-
intervals corresponding to the targets. In this figure, we
only show the directed edges from trajectory-interval s
to all the nodes outside the cluster containing s.

(c) Solve a GTSP on the graph to find an optimal solution
to the GTSP. Note the discontinuities in the optimal
solution when the agent’s path reaches a trajectory-
interval (a node) in each cluster.

Fig. 2: Illustration of the key steps in the C∗ Algorithm.

connected by directed edges if they belong to distinct
clusters. Also, the depot is connected to all the
remaining nodes in G through directed edges. Formally,
G := (V,E) where V = {d} ∪ {p : p ∈ Ci, i ∈ S}
and E := {(p, q) : p ∈ Ci, q ∈ Cj , i, j ∈ S, i ̸=
j} ∪ {(p, d), (d, p) : p ∈ V \ {d}}. Each edge (p, q)
in G is associated with a non-negative, travel cost lpq
which is obtained by using any one of the algorithms
presented in section V. Since, the aim of this paper is
to generate tight bounds, given an edge (p, q), lpq must
be a lower-bound on the cost of the SFT from node p
to node q.

3) Solve the GTSP on G to find a bound: The objective
of the GTSP is to find a tour that starts and ends at
the depot such that exactly one node is visited from
each of the clusters corresponding to the targets and the
sum of the travel costs is minimized. We will prove in
Theorem 1 that the optimum to the GTSP provides a
lower-bound on the optimal cost to the MT-TSP.

Theorem 1. Suppose for any edge (p, q) ∈ G, lpq denotes a
lower-bound on the cost of the SFT from p to q. Then, the
optimal solution for the GTSP on G obtained in C∗ provides
a lower-bound on the optimum of the MT-TSP.

Proof. Consider an optimal solution to the MT-TSP. Let
the sequence of nodes in G visited by this solution be
S∗ := (d, i1, · · · , in, d) and the corresponding arrival times be
(0, t1, · · · , tn, ttour). In this solution, the agent travels from
d to πi1(t1), then travels from πik(tk) to πik+1

(tk+1) for
k = 1, · · · , n − 1 and finally travels from πin(tn) to d at
speed vmax. The time taken by the agent to complete the tour
is ttour = t1 +

∑n−1
k=1(tk+1 − tk) + (ttour − tn). For any pair

of adjacent nodes (p, q) visited by the agent in this optimal
solution, since lpq is a lower-bound on the SFT cost from p
to q, ldi1 ≤ t1, likik+1

≤ tk+1 − tk for k = 1, · · · , n− 1 and
lind ≤ ttour − tn. Therefore, for the sequence of nodes S∗

in the optimal solution, ldi1 +
∑n−1

k=1 likik+1
+ lind ≤ ttour.

Since S∗ is also a feasible solution to the GTSP, the optimal
cost obtained by solving the GTSP must be at most equal to
ldi1 +

∑n−1
k=1 likik+1

+ lind ≤ ttour. Hence proved.

Remark 1. As the number of partitions of the time-windows
corresponding to the targets tend to infinity, the size of each
time interval (∆) tends to 0 and that of the discontinuities
in the agent’s path tend to disappear. Since for any partition
of the time-windows, C∗ provides a lower-bound, the optimal
cost of the relaxed MT-TSP converges asymptotically to the
optimal cost of the MT-TSP as ∆ → 0.

V. ALGORITHMS FOR COMPUTING TRAVEL COSTS

Given two trajectory-intervals (or nodes4) p :=πi[ti, ti] and
q :=πj [tj , tj], this section presents four bounding algorithms
to estimate the travel cost lpq such that lpq is at most equal
to the optimal SFT cost from πi[ti, ti] to πj [tj , tj]. Three of

4If a node is generated from a depot, the algorithms in section V can still
be applied by treating the depot as a stationary target.

5

the algorithms can be applied to generic target trajectories
while the fourth algorithm is specially optimized and tailored
for piecewise-linear target trajectories. Before we present our
algorithms, we introduce two conditions that, if satisfied, will
address the trivial cases that do not require further optimiza-
tion.

Theorem 2. If the travel from πi(ti) to πj(tj) is not feasible,
then the travel from πi[ti, ti] to πj [tj , tj] is not feasible, and
vice-versa.

Proof. We provide a proof by contraposition. If travel from
πi(ti) to πj(tj) is feasible, then it readily follows that the
travel from πi[ti, ti] to πj [tj , tj] is feasible. Now, let us show
the other direction. If the travel from πi[ti, ti] to πj [tj , tj] is
feasible, then there is a time t∗i ∈ [ti, ti] and a time t∗j ∈
[tj , tj] such that the travel from πi(t

∗
i) to πj(t

∗
j) is feasible.

Let v∗ denote the speed of the agent during this travel. Since
the agent can match the speed of any target, it can travel along
the trajectory of target i from πi(ti) to πi(t

∗
i) at speed vi, then

travel from πi(t
∗
i) to πj(t

∗
j) at speed v∗, and finally travel

along the trajectory of target j from πj(t
∗
j) to πj(tj) at speed

vj . As a result, the travel from πi(ti) to πj(tj) is feasible.

Theorem 3. If travel from πi(ti) to πj(tj) is feasible, then
tj − ti is the optimal cost of SFT from πi[ti, ti] to πj [tj , tj].

Proof. Note that the objective of SFT is to find a feasible
solution such that tj − ti is minimized subject to tj ∈[tj , tj]
and ti ∈[ti, ti]. Therefore, a trivial lower-bound on the optimal
cost to this SFT problem is tj − ti. If travel from πi(ti) to
πj(tj) is feasible, its travel cost will be equal to tj − ti which
matches the lower-bound. Hence, tj − ti must be the optimal
cost of the SFT from πi[ti, ti] to πj [tj , tj].

Based on the above theorems, we first check if the travel
from πi(ti) to πj(tj) is feasible. If this condition is not sat-
isfied, then from Theorem 2, travel from πi[ti, ti] to πj [tj , tj]
is also not feasible. In this case, each of the algorithms return
a very large value for lpq and no further computations are
necessary. Next, if travel from πi(ti) to πj(tj) is feasible,
each algorithm sets lpq to be equal to tj − ti and no further
optimization is required (from Theorem 3). Therefore, we
assume henceforth that travel from πi(ti) to πj(tj) is feasible,
while travel from πi(ti) to πj(tj) is not feasible. Based on this
assumption, we present our bounding algorithms. We obtain a
variant of C∗ based on the choice of the bounding algorithm
used; consequently, each of the following subsections is named
accordingly to match the corresponding C∗ variant.

A. C∗-Lite

We derive a simple bound based solely on the timing
constraints. Regardless of the feasibility of travel from πi(ti)
to πj(tj), as discussed in the proof of Theorem 3, tj − ti
serves as a valid lower-bound for the SFT cost. Additionally,
we know that the optimal SFT cost is always non-negative.
Hence, in this variant of C∗, we set lpq := max{tj − ti, 0}.

B. C∗-Geometric

In this variant of C∗, we ignore the motion constraints
of the target trajectories and only consider the shortest Eu-
clidean distance between the points traveled in πi[ti, ti] and
πj [tj , tj]. Specifically, let all the points traveled in πi[ti, ti]
and πj [tj , tj] be denoted as S1 and S2 respectively. Let the
shortest Euclidean distance between the sets S1 and S2 be
defined as dist(S1, S2) := minx1∈S1,x2∈S2

∥x1 − x2∥2. Here,
we set lpq := dist(S1,S2)

vmax
which is clearly a lower-bound on

the SFT cost.
For the target trajectories considered in this paper, each

segment of a trajectory is either a straight line or an arc
with a given turning radius for the target. If πi[ti, ti] and
πj [tj , tj] correspond to ki and kj segments, respectively, we
compute dist(S1, S2) by finding the shortest distance between
any segment in S1 and any segment in S2, and then computing
the minimum of all these optima. This requires O(kikj)
computations.

C. C∗-Sampling

This variant of C∗ first partitions [ti, ti] into k uniform sub-
intervals, where k is a sampling parameter. It then estimates
the optimal SFT cost for departing from each sub-interval
and selects the minimum. Formally, let the pth sub-interval
of [ti, ti] be [ti,p, ti,p]. The optimal SFT cost is then given by
minkp=1 mint∈[ti,p,ti,p]

(E(t)− t).
Since E(t) monotonically increases with t (later proved

in Theorem 4), the optimal SFT cost is at least equal to
lpq := minkp=1(E(ti,p) − ti,p). If travel is infeasible from
πi(ti,p) to πj(t̄j), then travel from πi(t) for any time t ≥ ti,p
to πj is also infeasible (from Theorem 2); in this case, E(ti,p)
is set to a very large value. Otherwise, if the trajectories
consist of straight lines, E(ti,p) is relatively easy to find using
the formulae provided in the appendix. The number of steps
required to compute lpq in this case is O(kkj) where kj is the
number of line segments in πj .

If the trajectories consist of more generic segments where
E(ti,p) is difficult to compute directly, we can bound E(ti,p)
using the following approach: We know that if the agent
starts at πi(ti,p), it cannot arrive at πj at any time earlier
than E(ti,p). Therefore, if there is a sub-interval [Elp, Eup] ⊆
[tj , tj] such that the agent can start from πi(ti,p) and reach
πj(Eup) but cannot reach πj(Elp), then E(ti,p) ∈ [Elp, Eup]. To
refine this bound, we iteratively partition [tj , tj] into smaller
intervals using binary search, ensuring that the above condition
is satisfied and |Eup − Elp| ≤ ϵ where ϵ is another sampling
parameter that can be adjusted. Therefore, in this general case,
we define lpq := minkp=1(Elp − ti,p). The sampling algorithm
in this case will require O(k log2

∆
ϵ) steps where ∆ is the size

of [tj , tj].

D. C∗-Linear

This variant of C∗ finds the optimum for SFT, and can be
applied when both trajectory intervals, πi[ti, ti] and πj [tj , tj],
correspond to piecewise-linear segments. If πi[ti, ti] and
πj [tj , tj] each correspond to only one line segment, we

6

ti

ti

tj = E(ti)

tj = E(ti)

t1i

t2i t1j

t2j

t3j

Trajectory of
target i

Trajectory of
target j

Fig. 3: Given target trajectories for AlgoSFT. In the trajectory
of target i, there are 3 line-segments and 2 corner points. In the
trajectory of target j, there are 4 line-segments and 3 corner
points. Also, Ti := (ti, t

1
i , t

2
i , ti) and Tj := (tj , t

1
j , t

2
j , t

3
j , tj).

can simply identify the stationary or boundary points, verify
feasibility, and select a solution that yields the optimal cost
(derivations for finding the stationary points are provided in
the appendix VIII-C). However, if either πi[ti, ti] or πj [tj , tj]
corresponds to more than one line segment, considering all
combinations of segments like in sub-section V-B will require
O(kikj) steps. In this subsection, we present an efficient
algorithm that reduces the complexity to O(ki + kj) steps.

Before we present our algorithm, we mention why solutions
to the EFAT and LFDT problems posed in Section III play a
crucial role in our approach here. In a EFAT solution, E(ti)
denotes the earliest feasible time of arrival to the trajectory πj

from trajectory point πi(ti). This implies that the agent cannot
reach πj at any time earlier than E(ti); also, it is sub-optimal
to reach πj at any time later than E(ti). Similar observations
can also be deduced using a LFDT solution which provides
the latest feasible time of departure from a trajectory to a
trajectory-point. In the appendix, we show the calculations
to solve the EFAT and LFDT problems. Solutions for these
problems can be used to prune unnecessary parts of πi[ti, ti]
and πj [tj , tj] that will never lead to an optimal solution.
Specifically, we can ensure that E(ti) = tj (or ti = L(tj))
and E(ti) = tj (or ti = L(tj)). Henceforth, we will assume
that the trajectory-intervals already satisfy these conditions.
We will also assume that the trajectory-intervals don’t intersect
each other. That is there is no time t in [ti, ti] and [tj , tj] such
that πi(t) = πj(t); otherwise, this is a trivial case and the
optimal SFT cost is 0.

Let Ti and Tj denote lists of selected times (or time instants)
corresponding to targets i and j. The times in Ti and Tj

are automatically sorted in ascending order as new times
are added. Ti and Tj are first initialized with all the times

corresponding to the corner5 trajectory-points in πi[ti, ti] and
πj [tj , tj] respectively. In addition, the boundary times ti, ti are
added to Ti, and similarly, tj , tj are added to Tj (refer to Fig.
3). Also, let the kth smallest time in Ti and Tj be referred
to as Ti(k) and Tj(k) respectively. Our algorithm denoted as
AlgoSFT is as follows:

1) For each time t in Ti corresponding to a corner-trajectory
point in πi[ti, ti], find E(t) and add E(t) to Tj . Simi-
larly, for each time t in Tj corresponding to a corner
trajectory-point in πj [tj , tj], find L(t) and add L(t) to
Ti. At the end of this step, |Ti| = |Tj | (refer to Fig. 4).

2) For k = 1, · · · , |Ti| − 1, do the following: Let πik de-
note the trajectory-sub-interval of πi[ti, ti] correspond-
ing to [Ti(k), Ti(k + 1)]. Similarly, let πjk denote
the trajectory-sub-interval of πj [tj , tj] corresponding to
[Tj(k), Tj(k + 1)]. Find the SFT cost from πik to πjk

(using the calculations in the appendix VIII-C). Let this
cost be denoted as SFTk.

3) Set lpq := min
|Ti|−1
k=1 SFTk.

We will now prove that AlgoSFT correctly computes the
SFT cost from πi[ti, ti] to πj [tj , tj].

Theorem 4. Consider any choice of times t1, t2 ∈ [ti, ti] such
that t1 < t2. Then, E(t1) < E(t2).

Proof. We prove this theorem by contradiction. Suppose
E(t1) ≥ E(t2). Let the position occupied by target t2 at time
E(t2) be denoted by p∗ = πj(E(t2)). The agent can travel from
πi(t1) to πi(t2) at speed vmax and then travel from πi(t2) to
πj(E(t2)) following the EFAT path. Since the agent can travel
faster than target i, it will reach the location p∗ sooner than
target tj . This will allow the agent to further travel along πj to
intercept tj sooner than E(t2). This implies that we have found
a new arrival time for the agent that is less than E(t2) ≤ E(t1).
As a result E(t1) is not the earliest arrival time to visit tj which
is a contradiction. Hence proved.

Theorem 5. For any time t ∈ [ti, ti], L(E(t)) = t. Similarly,
for any time t ∈ [tj , tj], E(L(t)) = t.

Proof. We will prove that for any t ∈ [ti, ti], L(E(t)) = t;
the other result can be proved by similar arguments. L(E(t))
denotes the latest departure time available to leave πi and
arrive at p∗ = πj(E(t)). Therefore, L(E(t)) ≥ t. Now, suppose
L(E(t)) > t. The agent can travel from πi(t) to πi(L(E(t)))
at speed vmax and then travel from πi(L(E(t))) to πj(E(t))
following the EFAT path. Similar to the argument in Theorem
4, if L(E(t)) > t is true, the agent will be able to visit target
tj sooner than E(t) which is not possible. Hence, the only
possibility is that L(E(t)) = t.

Theorem 6. AlgoSFT correctly finds the optimal SFT cost
from πi[ti, ti] to πj [tj , tj] in the order of ki + kj steps where
ki and kj denote the number of line segments in πi[ti, ti] and
πj [tj , tj] respectively.

Proof. Consider any time t̄ in the list Tj at the end of step
1 of AlgoSFT. Either t̄ = E(t) for some t ∈ Ti or there is a

5These are break-points where a target trajectory transitions from a line
segment to another with a different slope.

7

ti

ti

tj

tj

t1i

t2i t1j

t2j

t3j

E(t1i)

E(t2i)L(t2j)

L(t1j)

L(t3j)

Fig. 4: Target trajectories from Fig. 3 showing the updated lists
of times in Ti and Tj . At the end of the step 1 of AlgoSFT,
|Ti| = |Tj | = 7.

time t ∈ Ti such that L(t̄) = t in which case E(t) = t̄ from
Theorem 5. Therefore, for any time t̄ ∈ Tj , there is a t ∈ Ti

such that E(t) = t̄. Similarly, for any t ∈ Ti, there is a t̄ ∈ Tj

such that E(t) = t̄.
If Ti(k) and Tj(k) denote the kth smallest time in Ti and

Tj respectively, Theorem 4 implies that Tj(k) = E(Ti(k)).
Suppose the time to depart in an optimal SFT solution from
πi[ti, ti] to πj [tj , tj] is t∗ ∈ [ti, ti]. Then, for some k∗ ∈
1, · · · , |Ti| − 1, t∗ ∈ [Ti(k

∗), Ti(k
∗ + 1)]. Applying Theorem

4, it then must follow that E(t∗) ∈ [Tj(k
∗), Tj(k

∗ + 1)].
Therefore, using the notations in step 2 of AlgoSFT, the
optimal SFT cost from πi[ti, ti] to πj [tj , tj] must be equal
min

|Ti|−1
k=1 SFTk.

The computation of the optimal SFT cost essentially in-
volves solving |Ti| − 1 optimization problems, each requiring
the calculation of a fixed number of stationary or boundary
points and checking their feasibility. Additionally, we can
verify that |Ti| = |Tj | = ki + kj . Therefore, the number of
steps required to implement AlgoSFT is in the order of ki+kj .
Hence proved.

VI. NUMERICAL RESULTS

A. Test Settings and Instance Generation

All the tests were run on a laptop with an Intel Core
i7-7700HQ 2.80GHz CPU, and 16GB RAM. For all the
C∗ variants, relaxing MT-TSP and constructing the graph,
including computing the edge costs, were all implemented
using Python 3.11.6. An exact branch-and-cut solver, written
in C++ and utilizing CPLEX 22.1, was used to solve an
integer program for the GTSP, to optimality. For the special
case where targets move along straight lines, the SOCP-based
formulation by Stieber and Fügenschuh in [17], with the
objective modified to minimize travel time, was used as our
baseline. This formulation was implemented in CPLEX 22.1
IDE, which uses OPL. More details on this formulation can be

found in the appendix (section VIII). The CPLEX parameter
EpGap6 was set to be 1e-04 and the CPLEX parameter TiLim7

was set to 7200s for our algorithms as well as the baseline.

A total of 90 instances were generated, with 30 simple
instances where targets move along lines, 30 complex instances
where targets move along piecewise-linear paths, and 30
generic instances where targets move along Dubins curves
made of straight lines and circular arcs. The generic instances
are considered separately in section VI-G. For a given instance
type, we generated three sets of 10 instances: one set with
5 targets, another set with 10 targets, and a third set with
15 targets. The instances were defined by the number of
targets n, a square area of fixed size 100units containing
the start locations of the targets, a fixed time horizon T =
100 secs over which the target trajectories are defined, the
depot location fixed at the bottom-left corner of the square
area with coordinates (10, 10), a fixed maximum agent speed
of vmax = 4units/sec, and a set of randomly generated
trajectories for the n targets, where each target moves at a
constant speed within [0.5, 1]units/sec. Each target was also
assigned up to 2 time-windows, whose total duration adds up
to 20 secs. Note that for the simple instances, we assigned
only 1 time-window for each target. We also ensured that the
paths traversed by the targets were all confined within the
square area. This was so that the baseline SOCP, which relies
on these assumptions, could be used.

The time-windows for any given instance were defined as
follows. First, the time-window for each target was set to be
the entire time horizon, and a feasible solution was found
using the algorithm in section VI-B. Second, each target was
assigned a primary time-window of duration 15 secs, which
contains the time that target was visited by the agent in the
feasible solution. Third, a secondary time-window of 5 secs
that does not intersect with the primary time-window, was
randomly assigned to each of the targets as well. For the simple
instances, only the primary time-window was assigned to each
target, but with an increased duration of 20 secs.

Before proceeding further, note that when finding feasible
solutions or when running the C∗ variants, we partition the
time-windows for each target into equal intervals of size
∆ = 0.625 secs. Since for any target, the duration of each
time-window is an integer multiple of 5 secs, and the total
duration from all the time-windows sums to 20 secs, we
get a total of 32 intervals per target. This is always true
unless otherwise specified. Also, when using C∗-Sampling,
the sampling parameter k is always set to 10, and the gap
tolerance ϵ is set to 0.05.

B. Finding Feasible Solutions

We evaluate the quality of bounds from the C∗ variants,
based on how far, they deviate on average, from feasible
solution costs. This section briefly discusses how feasible
solutions for the MT-TSP can be obtained by first transforming

6Relative tolerance on the gap between the best solution objective and the
best bound found by the solver.

7Time limit before which the solver terminates.

8

MT-TSP into a corresponding GTSP and then finding feasible
solutions for the GTSP.

The time-windows for each target are first sampled into
equally spaced time-instants. The trajectory-points correspond-
ing to these time-instants are then found. A directed graph G
is then constructed, with the vertex set defined as the depot
and the set of all trajectory-points found. All the vertices
corresponding to a given target are clustered together. If the
agent can travel feasibly from a vertex belonging to a cluster
to another vertex belonging to a different cluster, a directed
edge is added, with the cost being the difference between the
time-instants corresponding to the destination vertex and the
start vertex. If the destination vertex is the depot, then the edge
cost is the time taken by the agent to reach the depot from the
start vertex by moving at its maximum speed. If travel between
two vertices is not feasible, the cost of the edge between the
vertices is set to a large value to denote infeasibility.

A feasible solution for the MT-TSP can now be obtained
by finding a directed edge cycle which starts at the depot
vertex, visits exactly one vertex from each cluster, and returns
to the depot vertex. Note that this is simply, the problem of
finding a feasible solution for the GTSP defined on graph G.
One way to solve this problem is to first transform the GTSP
into an Asymmetric TSP (ATSP) using the transformation in
[34], and then find feasible solutions for the ATSP using an
LKH solver [35] or some other TSP heuristics. Note that one
can also directly use heuristics for GTSP such as GLKH [36],
and GLNS [37]. Since the target trajectories are continuous
functions of time, the best arrival times for each target can
be calculated, given the order in which they were visited in
the GTSP solution, resulting in a feasible tour with improved
travel time. Note that if the number of discrete time-instants
are not sufficient, we may not obtain a feasible solution for
the MT-TSP using this approach, even if one exists.

C. Evaluating the Bounds

In this section, we compare, for all the simple and complex
instances, the feasible solution costs and the lower-bounding
costs from the C∗ variants. For simple instances, the optimum
from the baseline SOCP is also added to the comparison8.

The results are presented in Fig. 5. Here, (a), (b), (c)
includes all the simple instances, and (d), (e), (f) includes all
the complex instances. The instances are sorted from left to
right in the order of increasing feasible solution costs. We ob-
serve C∗-Linear provides the tightest bounds, followed by C∗-
Geometric, then C∗-Sampling, and finally C∗-Lite. The bounds
from C∗-Linear are the strongest since it uses the optimum
for SFT. However, these bounds are closely matched by those
from C∗-Geometric and C∗-Sampling. Note that although C∗-
Geometric relaxes the timing requirements for SFT, it returns
slightly stronger bounds than C∗-Sampling. The bounds from
C∗-Sampling however improves, and converges to those from
C∗-Linear as the sampling parameter k approaches ∞ and
the gap tolerance ϵ approaches 0. This however, comes at

8The optimum is only known for the simple instances solved using the
baseline SOCP.

the expense of increased computational burden. Finally, C∗-
Lite uses trivial lower-bounds for SFT, making its bounds
the weakest. For simple instances, feasible solution costs are
tightly bounded by the SOCP costs, with the lower-bounds
not exceeding the SOCP costs. This shows that the approach
to find feasible solutions is effective, and that the C∗ variants
indeed provide lower-bounds for the MT-TSP.

For instance-1 in (c), the SOCP cost slightly exceeds the
feasible cost. This is because the problem becomes signifi-
cantly more computationally expensive at 15 targets, and as a
result, the CPLEX solver failed to converge to the optimum
within the time limit for that instance. Hence, the best feasible
cost found by the solver before exceeding the time limit was
used for this instance. Similarly, in (c), the bounds from all
C∗ variants except C∗-Lite are weaker for instance-1, and the
bounds from all C∗ variants are weaker for instance-5. These
too, were due to the increased computational complexity when
considering 15 targets. Here, the CPLEX solver terminated
due to insufficient memory, leaving the gap between the dual
bound and the best objective value, not fully converged to be
within the specified tolerance. In such cases, the best lower-
bound found by the solver before termination was considered,
as it still provides an underestimate. These outlier instances
are illustrated using square markers, indicating that CPLEX
solver terminated due to memory constraints.

D. Varying the Number of Targets

In this section, we see how varying the number of targets
affects the tightness of bounds, as well as runtimes, for the C∗

variants. The SOCP is also evaluated for simple instances. For
a given instance, the % deviation is defined as Cf−Clb

Cf
× 100

where Cf denotes the feasible solution cost and Clb denotes
the lower-bound. The lower-bound here represents the cost
returned from a C∗ variant, or the SOCP. The runtime (RT)
for an instance is separated into the graph generation runtime
(Graph Gen RT), which is the runtime for constructing graphs
in the C∗ variants, and the total runtime (Total RT), which
is the time taken by the C∗ variants for graph generation,
and then solving GTSP on the generated graph. The runtime
for SOCP is also referred to as Total RT. In Fig. 6, (a)
considers all the simple instances and (b) considers all the
complex instances. The average of the % deviation from all
the instances (except outliers) corresponding to 5, 10, and 15
targets are presented in the figure. Fig. 7 follows the same
layout as Fig. 6, and presents runtimes instead of % deviation.

From both Fig. 6 (a) and (b), we observe that % deviation
for the C∗ variants increases as the number of targets are
increased. This is to be expected since each visited target
in the relaxed MT-TSP incurs an additional discontinuity. As
we saw previously, C∗-Linear gives the best bounds, with an
average % deviation ≈ 4% for 15 targets. This is followed
by C∗-Geometric, C∗-Sampling, and C∗-Lite, respectively. We
also observe that the growth in % deviation with the number
of targets is greater in C∗-Lite as compared to the other
C∗ variants. Note how the % deviation for C∗-Linear, C∗-
Geometric, and C∗-Sampling for 15 targets, are still smaller
than that of C∗-Lite for 5 targets. Finally, we observe the

9

Fig. 5: Lower-bounds from the C∗ variants as compared to the feasible costs, for the simple instances (left), and the complex
instances (right). The SOCP costs are also included for the simple instances. In (c), square markers indicate the outlier cases
for instances 1, and 5.

% deviation for SOCP to be very small, indicating that the
feasible solution costs obtained were on average, very close
to the optimal costs. Note that the SOCP costs does not depend
on the number of targets as it aims to find the optimum.

From Fig. 7 (a) and (b) we see that Graph Gen RT is
the smallest for C∗-Lite, followed by C∗-Geometric, then C∗-
Linear, and finally, C∗-Sampling. This is because the lower-
bounding algorithm for SFT in C∗-Lite is trivial, making it
the fastest. This is followed by the one in C∗-Geometric,
which solves an easier time-independent problem. C∗-Linear
finds the optimum for the SFT making it slightly slower.
However, it uses AlgoSFT, which is specifically tailored for
piecewise-linear target trajectories, and involves an efficient
search. Finally, for C∗-Sampling, the computational burden for

finding lower-bounds for SFT increases with larger sampling
parameter k, and smaller gap tolerance, ϵ. By setting k to
10 and ϵ to 0.05, C∗-Sampling incurred more computational
burden than the other C∗ variants. We also observe that the rate
at which Graph Gen RT grows for the different C∗ variants can
be explained similarly. Note however, that Graph Gen RT in
general contributes very little to the Total RT as compared to
the time taken to solve the GTSP. We see a big jump in Total
RT with increasing targets, especially between 10 targets and
15 targets. This can be attributed to the increasing complexity
of solving GTSP on larger graphs. We observe that on average,
the Total RT is the least for C∗-Geometric and C∗-Sampling,
followed by C∗-Linear, and then C∗-Lite. It is likely that the
relatively slower runtimes for C∗-Lite is due to its weaker

10

Fig. 6: Plots comparing the average % deviation for the C∗ variants (and SOCP for simple instances), as the number of targets
are varied. Note how the % deviation for C∗-Linear is ≈ 4% for 15 targets, for both the simple (a) and complex (b) instances.
Also, note how the average % deviation for SOCP is less than 1%.

Fig. 7: Plots comparing the average runtimes for the C∗ variants, as the number of targets are varied, for both the simple (a),
and complex (b) instances. Note how for the simple instances, SOCP is faster than the C∗ variants for up to 10 targets, but an
order of magnitude slower for 15 targets.

relaxation for MT-TSP, making the underlying GTSP more
difficult to solve. Finally, we observe from Fig. 7 (a), how the
Total RT for SOCP is significantly smaller than the C∗ variants
for 5, and 10 targets, but becomes an order of magnitude larger
for 15 targets.

E. Varying the Discretization

In this section, we show how varying the discretization
levels for C∗ variants affect their % deviation and runtimes.
Recall that for any target, the duration of each time-window is
an integer multiple of 5 secs, and the total duration from all the
time-windows sums to 20 secs. Considering this, we define the
discretization levels as follows. At lvl-1, the time-windows
for each target are partitioned into equal intervals of duration

Discretization Level lvl-1 lvl-2 lvl-3 lvl-4
Intervals per Target 4 8 16 32
Interval Duration 5 2.5 1.25 0.625

TABLE I: Information about the discretization levels.

of 5 secs. For every new level thereafter, the interval durations
are halved, and the number of intervals are doubled. All of this
is illustrated in Table. I.

Fig. 8 (a) and (b) considers all the simple and complex
instances, except for the outlier instances previously discussed.
From all the instances considered, (a) illustrates the average
% deviation, and (b) illustrates the average runtimes, for
each discretization level. From (a), we observe how higher

11

Fig. 8: Plots illustrating (a) the average % deviation for the C∗ variants, and (b) the average runtimes for the C∗ variants, for
different levels of discretization. Note how in (a), C∗-Linear at lvl-1 has lower % deviation than C∗-Lite at lvl-4. Also
in (b), note how at lvl-4, the runtimes increase significantly for all approaches.

discretization produces tighter bounds for all the C∗ variants as
one would expect. Note that the % deviation improvement for
C∗-Lite is more significant here, as compared to the rest of the
variants. Also, note that the % deviation for C∗-Lite at lvl-4
is still higher than it is for C∗-Linear at lvl-1. Finally, note
that the rate at which % deviation improves, decreases at
higher discretizations, for all the approaches. From (b), we
observe how the runtimes increase with higher discretization.
Note that the increase in Graph Gen RT is more significant
for C∗-Linear, C∗-Geometric, and C∗-Sampling, than it is for
C∗-Lite here. Finally, we observe how the growth in Total RT
is significantly higher between lvl-3, and lvl-4, than it
is between the previous levels. Like before, this too can be
attributed to the increasing complexity of solving GTSP on
larger graphs. Sample solutions for a complex instance are
shown in Fig. 10.

F. Obtaining Feasible Solutions from C∗ Variants

In this section, we attempt to construct feasible solutions
for the MT-TSP, from lower-bounds obtained from the C∗

variants. We also evaluate how good the costs are for these
new solutions. Clearly, if the discretization parameter ∆ goes
to 0, the lower-bounds converge to the optimum. However,
this is computationally infeasible and therefore, we will fix
the discretization level at lvl-4.

To construct feasible solutions from lower-bounds, we first
fix the order in which the targets are visited in the lower-
bounding solution, and then find a minimum cost tour for the
agent over that fixed order such that it a) visits each target
within one of its time-windows and b) completes the tour
without exceeding its maximum speed vmax. For the cases
where such a tour cannot be constructed, we say a feasible
solution cannot be constructed from a given lower-bound. Note
that this is the same procedure we used in section VI-B to
obtain feasible tours with improved travel times from the ones
initially found by solving the GTSP.

For Table. II, we consider all the simple and complex
instances, except for the outlier instances (same instances as
in Fig. 8). Here, Success Rate illustrates the percentage of
instances from which a feasible solution can be constructed
from the lower-bound. For such instances, we compare the
new feasible solutions with the original ones to determine if
the order in which the targets are visited remains the same
(or matches). Note that if the orders match, then the arrival
times for the targets must also be the same, since we used the
same procedure to reoptimize the original feasible solutions, as
well as construct new feasible solutions from lower-bounds,
as discussed earlier. The percentage of instances where the
feasible solutions match is given by % Match in the table.
Finally, from all the remaining instances where the solutions
do not match, we average the costs of both the feasible
solutions originally obtained as well as the newly constructed
ones, denoted by Cold

f and Cnew
f respectively, and find %

Dev-Mismatch defined as
Cnew

f −Cold
f

Cold
f

× 100.

We observe that the success rate is more than 95% for all
the C∗ variants, with C∗-Lite giving the best rate of 98%.
If a feasible solution cannot be constructed from one lower-
bound, it might still be possible to construct one from another.
Hence, for at least 98% of the instances, we were able to
construct feasible solutions from various C∗ lower-bounds.
We also observe that the % match is similar for C∗-Linear,
C∗-Geometric, and C∗-Sampling, and it is significantly higher
than for C∗-Lite. Finally, we observe that the % dev-mismatch
remains close to 0% for all the C∗ variants. Specifically, Cnew

f

is marginally worse than Cold
f for C∗-Linear and C∗-Lite,

while Cnew
f is marginally better than Cold

f for C∗-Geometric
and C∗-Sampling.

G. Evaluating C∗ Variants for Generic Instances

In this section, we consider only the 30 generic instances,
where targets move along Dubins curves. We evaluate C∗-

12

Fig. 9: Plots illustrating (a) the average % deviation, and (b) the average runtimes, for the C∗ variants, as the number of targets
are varied. Only the generic instances are considered for both the plots.

Success Rate (%) % Match % Dev-Mismatch
C∗-Linear 96.55 64.29 0.21

C∗-Geometric 96.55 60.34 -0.026
C∗-Sampling 96.55 62.07 -0.072

C∗-Lite 98.28 47.37 0.27

TABLE II: Table illustrating the success rates for constructing
feasible solutions from various C∗ lower-bounds, and how
these new feasible solutions compare with the originally found
feasible solutions.

Geometric, C∗-Sampling, and C∗-Lite for these instances, and
omit C∗-Linear as it specifically caters to targets moving along
piecewise-linear paths. Fig. 9 illustrates in (a), the average %
deviation, and in (b), the average runtimes, for 5, 10, and 15
targets. Like for simple and complex instances in Fig. 6, the
% deviation here grows with more targets, with C∗-Geometric
always giving the best bounds, followed by C∗-Sampling, and
then C∗-Lite. Here too, the % deviation for both C∗-Geometric
and C∗-Sampling at 15 targets are still smaller than it is for C∗-
Lite at 5 targets. Note that the % deviation for C∗-Geometric at
15 targets is ≈ 5%. Averaging this with the % deviation of ≈
4% from complex instances, our approaches give on average,
a % deviation of ≈ 4.5% for general cases of MT-TSP. The
runtime results are also similar to the ones presented for simple
and complex instances in Fig. 7. Both Graph Gen RT and
Total RT increases with more number of targets. The Graph
Gen RT as well as its growth, are more significant for C∗-
Geometric and C∗-Sampling than it is for C∗-Lite. Finally, the
Total RT grows significantly for all the C∗ variants considered,
as the number of targets are increased from 10 to 15. Sample
solutions for the general case are shown in Fig. 11.

VII. CONCLUSION AND FUTURE WORK

We presented C∗, an approach for finding lower-bounds for
the MT-TSP with time-window constraints. Our method can
handle generic target trajectories, including piecewise-linear
segments and Dubins curves. We introduced several variants

of C∗, providing a trade-off between the quality of guarantees
and algorithm’s running speed. Additionally, we proved that
our approaches yield valid lower-bounds for the MT-TSP
and presented extensive numerical results to demonstrate the
performance of all the variants of C∗. Finally, we showed that
feasible solutions can often be constructed from the lower-
bounding solutions obtained using C∗ variants.

One of the challenges in this paper was the computational
burden associated with increasing the number of targets. This
difficulty arises from solving the GTSP, where the computa-
tional complexity heavily depends on the number of nodes
in the generated graph. Finding a way to overcome this
challenge would enable us to compute tight bounds for a
larger number of targets. In fact, one of our primary future
goals is to develop efficient branch-and-cut implementations
that leverage the specific features of the MT-TSP problem.
For instance, unlike standard GTSP formulations that include
subtour elimination constraints, we may be able to omit some
of these constraints because the timing constraints in our
problem inherently eliminate certain subtours (e.g., those that
travel back in time). This represents a promising new research
direction that warrants further investigation. Another direction
of research can focus on developing approximation algorithms
for simpler variants of the MT-TSP.

VIII. APPENDIX

A. Finding Earliest Feasible Arrival Time

Let the trajectory-point πs(t) for some target s at time t be
denoted by the tuple (x, y), where x and y are the coordinates
of the position occupied by s at time t. Also, let ẋ and ẏ
denote the time derivative of x and y respectively. Let i and j
be two targets moving along trajectories πi and πj as shown
in Fig 12. Note that πi(ti) = (ax, ay) and πj(t) = (x, y).
Let πi(t1) = (ax1

, ay1
) and πj(t2) = (x2, y2). The following

13

(a) Feasible solution (b) C∗-Linear (c) C∗-Geometric

Fig. 10: A feasible solution (using the algorithm in section VI-B) and the two best bounding solutions for a complex instance
with 15 targets moving along piecewise-linear paths.

(a) Feasible solution (b) C∗-Geometric (c) C∗-Sampling

Fig. 11: A feasible solution (using the algorithm in section VI-B) and the two best bounding solutions for a general instance
with 15 targets moving along Dubins curves.

(ax1
; ay1

; t1)

(x2; y2; t2)

(_x; _y)

(_ax; _ay)
(ax; ay; ti)

(x; y; t)

Fig. 12: Trajectories πi and πj for targets i and j.

equations then describe the motion of i and j from times t1

and t2 onward, respectively.

ax = ax1
+ ȧx(ti − t1), (1)

ay = ay1
+ ȧy(ti − t1), (2)

x = x2 + ẋ(t− t2), (3)
y = y2 + ẏ(t− t2). (4)

The distance between (ax, ay) and (x, y) is then given by√
(x− ax)2 + (y − ay)2. Also, we want the agent to travel at

speed vmax to obtain e(ti). Hence, we want t that satisfies√
(x− ax)2 + (y − ay)2 = vmax(t− ti). (5)

Squaring both sides, we obtain

(x− ax)
2 + (y − ay)

2 = v2max(t− ti)
2. (6)

Substituting (1), (2), (3), (4) into (6), and rearranging the
terms, we get

(ẋt+ C1)
2 + (ẏt+ C2)

2 = v2max(t− ti)
2, (7)

14

where

C1 = −ȧxti + C ′
1,

C2 = −ȧyti + C ′
2,

C ′
1 = x2 − ẋt2 − ax1

+ ȧxt1,

C ′
2 = y2 − ẏt2 − ay1

+ ȧyt1.

After extensive algebra, we finally get the following.

At2 +B(ti)t+ C(ti) = 0, (8)

where

A = ẋ2 + ẏ2 − v2max,

B(ti) = 2B′ti + 2C ′,

C(ti) = A′t2i −D′ti + E′,

B′ = −ȧxẋ− ȧy ẏ + v2max,

C ′ = C ′
1ẋ+ C ′

2ẏ,

A′ = ȧx
2 + ȧy

2 − v2max,

D′ = 2ȧxC
′
1 + 2ȧyC

′
2,

E′ = C ′2
1 + C ′2

2 .

One of the two roots that satisfies (8) is then the EFAT E(ti).
These roots9 can be obtained using the quadratic formula as
shown below.

t =
−B(ti)±

√
B(ti)2 − 4AC(ti)

2A
. (9)

B. Finding Latest Feasible Departure Time

From Theorem 5, we know that t = E(ti) ⇐⇒ L(t) = ti.
Hence, given a value of t, we seek to find ti such that t satisfies
(8). To solve this, note that (8) can be expanded as follows.

At2 + (2B′ti + 2C ′)t+ (A′t2i −D′ti + E′) = 0. (10)

By rearranging the terms in (10) we get the below equation.

A′t2i + (2B′t−D′)ti + (At2 + 2C ′t+ E′) = 0. (11)

(11) can then be represented simply as

A′t2i +H(t)ti + I(t) = 0. (12)

Hence, one of the two roots that satisfies 12 is the LFDT
L(t). Like previously shown, these roots can be obtained using
the quadratic formula below.

ti =
−H(t)±

√
H(t)2 − 4A′I(t)

2A′ . (13)

9We obtain two roots since (5) is squared to get (6). However, only one of
the roots yield the EFAT. Similar reasoning can be used to explain the same
occurrence when finding the LFDT.

C. Finding the Stationary Points for the SFT problem

Consider the same setup as in VIII-A. In the SFT problem,
our aim is to find a feasible travel from ti such that E(ti)− ti
is minimized. While in the EFAT problem, ti is given, here
ti is also a variable and the arrival time t will be a function
of ti. This function has already been derived in Equation (9).
By differentiating t in (9) with respect to ti, we can find an
expression for dt

dti
as follows.

dt

dti
=

1

2A

[
− d

dti
B(ti)±

2B(ti)
d
dti

B(ti)− 4A d
dti

C(ti)

2
√
B(ti)2 − 4AC(ti)

]
=

1

2A

[
−2B′ ± 2(2B′ti + 2C ′)(2B′)− 4A(2A′ti −D′)

2
√

(2B′ti + 2C ′)2 − 4A(A′t2i −D′ti + E′)

]
.

After further simplification, we get

dt

dti
=

1

A

[
−B′ ± 2B′(B′ti + C ′)−A(2A′ti −D′)

2
√
(B′ti + C ′)2 −A(A′t2i −D′ti + E′)

]
.

(14)

To find the stationary points of t− ti, we set d
dti

(t− ti) = 0
which then gives us

dt

dti
− 1 = 0 =⇒ dt

dti
= 1. (15)

Substituting (14) into (15), we get the following.

1

A

[
−B′ ± 2B′(B′ti + C ′)−A(2A′ti −D′)

2
√
(B′ti + C ′)2 −A(A′t2i −D′ti + E′)

]
= 1,

which can be rearranged as

(A+B′) = ± 2B′(B′ti + C ′)−A(2A′ti −D′)

2
√

(B′ti + C ′)2 −A(A′t2i −D′ti + E′)
.

(16)

Note that (B′ti + C ′)2 − A(A′t2i −D′ti + E′) ≥ 0 for all
ti. If (B′ti + C ′)2 − A(A′t2i − D′ti + E′) = 0 for some ti,
then it means both s1 and s2 occupies the same position at
time ti. In this case, the function t− ti becomes 0 and takes a
sharp turn (d

dti
(t− ti) becomes undefined) at ti. However, if

(B′ti+C ′)2−A(A′t2i −D′ti+E′) > 0, we get the following
by squaring both sides of (16) and multiplying the denominator
on both sides.

4(A+B′)2((B′ti + C ′)2 −A(A′t2i −D′ti + E′))

=(2B′(B′ti + C ′)−A(2A′ti −D′))2.

After extensive algebra, we finally get the following.

Pt2i +Qti +R = 0, (17)

15

where

P = 4(A+B′)2(B′2 −AA′)− 4B′4

− (4A2A′2 − 8AA′B′2),

Q = 4(A+B′)2(2B′C ′ +AD′)− 8B′3C ′

− (4AB′2D′ − 8AA′B′C ′ − 4A2A′D′),

R = 4(A+B′)2(C ′2 −AE′)− 4B′2C ′2

− (4AB′C ′D′ +A2D′2).

The values of ti that satisfies the two equations in (16) can
be obtained by solving for the two roots that satisfies (17).
These roots can once again, be obtained using the quadratic
formula given below.

ti =
−Q±

√
Q2 − 4PR

2P
. (18)

D. Second Order Cone Program (SOCP) Formulation

In this section, we explain the SOCP formulation for the
special case of the MT-TSP where targets follow linear tra-
jectories. Our formulation is very similar to the one presented
in [17], with a few changes made to accommodate the new
objective which is to minimize the time taken by the agent to
complete the tour, as opposed to minimizing the length of the
path traversed by the agent.

To ensure that the trajectory of the agent starts and ends at
the depot, we do the following: Given the depot d and a set
of n − 1 targets {1, · · · , n − 1}, we define a new stationary
target n which acts as a copy of d. This is achieved by fixing
n at the same position as d. We then define constraints so that
the agent’s trajectory starts from d and ends at n. To find the
optimal solution to the MT-TSP, we then seek to minimize the
time at which n is visited by the agent.

Let S := {1, · · · , n} and Sd := {d} ∪ S. We use the same
family of decision variables as in [17] where xi,j ∈ {0, 1}
indicates the decision of sending the agent from target i to
target j (xi,j = 1 if yes. No otherwise), and ti ∈ R describes
the arrival time of the agent at target i (or depot).

Our objective is to minimize the time at which the agent
arrives at target n as shown below.

min tn. (19)

Each target j must be visited once by the agent:∑
i∈Sd:i ̸=j

xi,j = 1, ∀ j ∈ S. (20)

The agent can start only once from the depot:∑
j∈S

xd,j ≤ 1. (21)

Flow conservation is ensured by:∑
i∈Sd:i ̸=j

xi,j ≥
∑

i∈S:i ̸=j

xj,i, ∀ j ∈ S. (22)

The agent must visit each target within its assigned time-
window. Note that, for the depot d and the target n, we assign
the time-window to be the entire time-horizon T :

tjl ≤ tj ≤ tju, ∀ j ∈ Sd. (23)

As shown in [17], real auxiliary variables cxi,j and cyi,j for
the x− and y− components of the Euclidean distance are
introduced as follows:

cxd,j −
((

xj
l + tj

∆xj

∆tj
− tjl

∆xj

∆tj

)
− dx

)
= 0,

∀ j ∈ S,

(24)

cyd,j −
((

yjl + tj
∆yj
∆tj

− tjl
∆yj
∆tj

)
− dy

)
= 0,

∀ j ∈ S,

(25)

cxi,j −
((

xj
l + tj

∆xj

∆tj
− tjl

∆xj

∆tj

)
−

(
xi
l + ti

∆xi

∆ti
− til

∆xi

∆ti

))
= 0, ∀ i ∈ S, j ∈ S : i ̸= j,

(26)

cyi,j −
((

yjl + tj
∆yj
∆tj

− tjl
∆yj
∆tj

)
−
(
yil + ti

∆yi
∆ti

− til
∆yi
∆ti

))
= 0, ∀ i ∈ S, j ∈ S : i ̸= j.

(27)

Here, for some target i, (xi
l, y

i
l) represents the coordinates of

i at time til and (xi
u, y

i
u) represents the coordinates of i at time

tiu. Also, ∆xi = xi
u − xi

l , ∆yi = yiu − yil , and ∆ti = tiu − til .
Finally, (dx, dy) denotes the coordinates of the depot d.

The following conditions requires that if the agent travels
between any two targets or the depot and a target, this travel
must be feasible:

ai,j ≤ vmax(tj − ti + T (1− xi,j)),

∀ i ∈ Sd, j ∈ S : i ̸= j,
(28)

ai,j ≥ 0, ∀ i ∈ Sd, j ∈ S : i ̸= j. (29)

The below conditions are needed to formulate the cone
constraints:

ai,j = ai,j +R(1− xi,j), ∀ i ∈ Sd, j ∈ S : i ̸= j. (30)

Where given the square area with fixed side length L that
contains all the moving targets and the depot, R =

√
2L is

the length of the square’s diagonal.
Finally, the cone constraints are given as:

(cxi,j)
2 + (cyi,j)

2 ≤ (ai,j)
2, ∀ i ∈ Sd, j ∈ S : i ̸= j. (31)

The agent must visit n only after visiting all the other
targets:

tn ≥ tj , ∀ j ∈ Sd. (32)

Remark 2. Although (28) prevents subtours in most cases,
they can still arise very rarely when two or more target
trajectories intersect at a time common to their time-windows.

16

The constraints defined by (33) prevents subtours for the two
target case. However for more than two targets, we will need
additional subtour elimination constraints:

xi,j + xj,i ≤ 1, ∀ i ∈ S, j ∈ S : i ̸= j. (33)

REFERENCES

[1] P. Oberlin, S. Rathinam, and S. Darbha, “Today’s traveling salesman
problem,” IEEE robotics & automation magazine, vol. 17, no. 4, pp.
70–77, 2010.

[2] Y. Liu and R. Bucknall, “Efficient multi-task allocation and path
planning for unmanned surface vehicle in support of ocean operations,”
Neurocomputing, vol. 275, pp. 1550–1566, 2018.

[3] J. L. Ryan, T. G. Bailey, J. T. Moore, and W. B. Carlton, “Reactive tabu
search in unmanned aerial reconnaissance simulations,” in 1998 Winter
Simulation Conference. Proceedings (Cat. No. 98CH36274), vol. 1.
IEEE, 1998, pp. 873–879.

[4] Z. Yu, L. Jinhai, G. Guochang, Z. Rubo, and Y. Haiyan, “An imple-
mentation of evolutionary computation for path planning of cooperative
mobile robots,” in Proceedings of the 4th World Congress on Intelligent
Control and Automation (Cat. No. 02EX527), vol. 3. IEEE, 2002, pp.
1798–1802.

[5] A. M. Ham, “Integrated scheduling of m-truck, m-drone, and m-depot
constrained by time-window, drop-pickup, and m-visit using constraint
programming,” Transportation Research Part C: Emerging Technologies,
vol. 91, pp. 1–14, 2018.

[6] S. Venkatachalam, K. Sundar, and S. Rathinam, “A two-stage approach
for routing multiple unmanned aerial vehicles with stochastic fuel
consumption,” Sensors, vol. 18, no. 11, p. 3756, 2018.

[7] H. A. Saleh and R. Chelouah, “The design of the global navigation satel-
lite system surveying networks using genetic algorithms,” Engineering
Applications of Artificial Intelligence, vol. 17, no. 1, pp. 111–122, 2004.

[8] O. Cheikhrouhou, A. Koubâa, and A. Zarrad, “A cloud based disaster
management system,” Journal of Sensor and Actuator Networks, vol. 9,
no. 1, p. 6, 2020.

[9] J. Conesa-Muñoz, G. Pajares, and A. Ribeiro, “Mix-opt: A new route
operator for optimal coverage path planning for a fleet in an agricultural
environment,” Expert Systems with Applications, vol. 54, pp. 364–378,
2016.

[10] W. Zhao, Q. Meng, and P. W. Chung, “A heuristic distributed task
allocation method for multivehicle multitask problems and its application
to search and rescue scenario,” IEEE transactions on cybernetics,
vol. 46, no. 4, pp. 902–915, 2015.

[11] B. L. Brumitt and A. Stentz, “Dynamic mission planning for multiple
mobile robots,” in Proceedings of IEEE International Conference on
Robotics and Automation, vol. 3. IEEE, 1996, pp. 2396–2401.

[12] R. S. de Moraes and E. P. de Freitas, “Experimental analysis of heuristic
solutions for the moving target traveling salesman problem applied to a
moving targets monitoring system,” Expert Systems with Applications,
vol. 136, pp. 392–409, 2019.

[13] Y. Wang and N. Wang, “Moving-target travelling salesman problem for
a helicopter patrolling suspicious boats in antipiracy escort operations,”
Expert Systems with Applications, vol. 213, p. 118986, 2023.

[14] D. Marlow, P. Kilby, and G. Mercer, “The travelling salesman prob-
lem in maritime surveillance–techniques, algorithms and analysis,” in
Proceedings of the international congress on modelling and simulation,
2007, pp. 684–690.

[15] A. Maskooki and M. Kallio, “A bi-criteria moving-target travelling
salesman problem under uncertainty,” European Journal of Operational
Research, 2023.

[16] C. S. Helvig, G. Robins, and A. Zelikovsky, “The moving-target
traveling salesman problem,” Journal of Algorithms, vol. 49, no. 1, pp.
153–174, 2003.

[17] A. Stieber and A. Fügenschuh, “Dealing with time in the multiple
traveling salespersons problem with moving targets,” Central European
Journal of Operations Research, vol. 30, no. 3, pp. 991–1017, 2022.

[18] C. D. Smith, Assessment of genetic algorithm based assignment strate-
gies for unmanned systems using the multiple traveling salesman prob-
lem with moving targets. University of Missouri-Kansas City, 2021.

[19] C. Groba, A. Sartal, and X. H. Vázquez, “Solving the dynamic traveling
salesman problem using a genetic algorithm with trajectory prediction:
An application to fish aggregating devices,” Computers & Operations
Research, vol. 56, pp. 22–32, 2015.

[20] I. Granado, L. Hernando, Z. Uriondo, and J. A. Fernandes-Salvador,
“A fishing route optimization decision support system: The case of the
tuna purse seiner,” European Journal of Operational Research, vol. 312,
no. 2, pp. 718–732, 2024.

[21] K. Sriniketh, A. V. Le, R. E. Mohan, B. J. Sheu, V. D. Tung, P. Van Duc,
and M. B. Vu, “Robot-aided human evacuation optimal path planning
for fire drill in buildings,” Journal of Building Engineering, vol. 72, p.
106512, 2023.

[22] B. Englot, T. Sahai, and I. Cohen, “Efficient tracking and pursuit of
moving targets by heuristic solution of the traveling salesman problem,”
in 52nd ieee conference on decision and control. IEEE, 2013, pp.
3433–3438.

[23] M. W. Savelsbergh, “Local search in routing problems with time
windows,” Annals of Operations research, vol. 4, pp. 285–305, 1985.

[24] P. Chalasani and R. Motwani, “Approximating capacitated routing and
delivery problems,” SIAM Journal on Computing, vol. 28, no. 6, pp.
2133–2149, 1999.

[25] M. Hammar and B. J. Nilsson, “Approximation results for kinetic
variants of tsp,” in Automata, Languages and Programming: 26th
International Colloquium, ICALP’99 Prague, Czech Republic, July 11–
15, 1999 Proceedings 26. Springer, 1999, pp. 392–401.

[26] A. G. Philip, Z. Ren, S. Rathinam, and H. Choset, “A mixed-integer
conic program for the moving-target traveling salesman problem based
on a graph of convex sets,” arXiv preprint arXiv:2403.04917, 2024.

[27] J.-M. Bourjolly, O. Gurtuna, and A. Lyngvi, “On-orbit servicing: a time-
dependent, moving-target traveling salesman problem,” International
Transactions in Operational Research, vol. 13, no. 5, pp. 461–481, 2006.

[28] N. S. Choubey, “Moving target travelling salesman problem using
genetic algorithm,” International Journal of Computer Applications,
vol. 70, no. 2, 2013.

[29] Q. Jiang, R. Sarker, and H. Abbass, “Tracking moving targets and the
non-stationary traveling salesman problem,” Complexity International,
vol. 11, no. 2005, pp. 171–179, 2005.

[30] U. Ucar and S. K. Işleyen, “A meta-heuristic solution approach for
the destruction of moving targets through air operations.” International
Journal of Industrial Engineering, vol. 26, no. 6, 2019.

[31] M. Hassoun, S. Shoval, E. Simchon, and L. Yedidsion, “The single line
moving target traveling salesman problem with release times,” Annals
of Operations Research, vol. 289, pp. 449–458, 2020.

[32] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, 1957.

[33] G. Laporte, H. Mercure, and Y. Nobert, “Generalized travelling salesman
problem through n sets of nodes: the asymmetrical case,” Discrete
Applied Mathematics, vol. 18, no. 2, pp. 185–197, 1987.

[34] C. E. Noon and J. C. Bean, “An efficient transformation of the gener-
alized traveling salesman problem,” INFOR: Information Systems and
Operational Research, vol. 31, no. 1, pp. 39–44, 1993.

[35] K. Helsgaun, “An effective implementation of the lin–kernighan travel-
ing salesman heuristic,” European journal of operational research, vol.
126, no. 1, pp. 106–130, 2000.

[36] ——, “Solving the equality generalized traveling salesman problem us-
ing the lin–kernighan–helsgaun algorithm,” Mathematical Programming
Computation, vol. 7, pp. 269–287, 2015.

[37] S. L. Smith and F. Imeson, “Glns: An effective large neighborhood
search heuristic for the generalized traveling salesman problem,” Com-
puters & Operations Research, vol. 87, pp. 1–19, 2017.

Allen George Philip (Student Member, IEEE) re-
ceived the B.S. degree in Mechanical Engineering
with a Mathematics Minor from Wichita State Uni-
versity, Wichita, KS, USA, in 2021. He is currently a
Ph.D. candidate in the Mechanical Engineering De-
partment at Texas A&M University, College Station,
TX, USA, and a graduate research assistant at the
university’s Autonomous Systems Laboratory.

17

Zhongqiang (Richard) Ren (Member, IEEE) re-
ceived the dual B.E. degree from Tongji University,
Shanghai, China, and FH Aachen University of
Applied Sciences, Aachen, Germany, and the M.S.
and Ph.D. degrees from Carnegie Mellon University,
Pittsburgh, PA, USA. He is currently an assistant
Professor at the UM-SJTU Joint Institute and the
Department of Automation, Shanghai Jiao Tong Uni-
versity, Shanghai, China.

Sivakumar Rathinam (Senior Member, IEEE) re-
ceived the Ph.D. degree from the University of
California at Berkeley in 2007. He is currently a
Professor with the Mechanical Engineering Depart-
ment, Texas A&M University. His research interests
include motion planning and control of autonomous
vehicles, collaborative decision making, combinato-
rial optimization, vision-based control, and air traffic
control.

Howie Choset (Fellow, IEEE) received the under-
graduate degrees in computer science and business
from the University of Pennsylvania, Philadelphia,
PA, USA, and the M.S. and Ph.D. degrees in me-
chanical engineering from Caltech, Pasadena, CA,
USA. He is a Professor in the Robotics Institute,
Carnegie Mellon, Pittsburgh, PA, USA.

	Introduction
	Literature Review
	Our work and contributions

	Problem Definition
	Notations and Definitions
	C* Algorithm
	Algorithms for Computing Travel Costs
	C*-Lite
	C*-Geometric
	C*-Sampling
	C*-Linear

	Numerical Results
	Test Settings and Instance Generation
	Finding Feasible Solutions
	Evaluating the Bounds
	Varying the Number of Targets
	Varying the Discretization
	Obtaining Feasible Solutions from C* Variants
	Evaluating C* Variants for Generic Instances

	Conclusion and Future Work
	Appendix
	Finding Earliest Feasible Arrival Time
	Finding Latest Feasible Departure Time
	Finding the Stationary Points for the SFT problem
	Second Order Cone Program (SOCP) Formulation

	References
	Biographies
	Allen George Philip
	Zhongqiang (Richard) Ren
	Sivakumar Rathinam
	Howie Choset

