
Heuristic Search for Path Finding with Refuelling

Anushtup Nandy1, Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract— This paper considers a generalization of the Path
Finding (PF) with refueling constraints referred to as the
Refuelling Path Finding (RF-PF) problem. Just like PF, the
RF-PF problem is defined over a graph, where vertices are gas
stations with known fuel prices, and edge costs depend on the
gas consumption between the corresponding vertices. RF-PF
seeks a minimum-cost path from the start to the goal vertex
for a robot with a limited gas tank and a limited number of
refuelling stops. While RF-PF is polynomial-time solvable, it
remains a challenge to quickly compute an optimal solution in
practice since the robot needs to simultaneously determine the
path, where to make the stops, and the amount to refuel at each
stop. This paper develops a heuristic search algorithm called
Refuel A∗ (RF-A∗) that iteratively constructs partial solution
paths from the start to the goal guided by a heuristic function
while leveraging dominance rules for state pruning during
planning. RF-A∗ is guaranteed to find an optimal solution and
runs more than an order of magnitude faster than the existing
state of the art (a polynomial time algorithm) when tested in
large city maps with hundreds of gas stations.

I. INTRODUCTION

Given a graph with non-negative edge costs, the well-
known Path Finding (PF) problem seeks a minimum-cost
path from the given start vertex to a goal vertex. This paper
considers a Refueling Path Finding (RF-PF) problem, where
the vertices represent gas stations with known fuel prices, and
the edge costs indicate the gas consumption when moving
between vertices. The fuel prices at vertices may be different
and are fixed over time. RF-PF seeks a start-goal path subject
to a limited gas tank and a limited number of refuelling stops
while minimizing the fuel cost along the path (Fig. 1).

RF-PF is also called the Gas Station Problem [4], [6],
[13], [18] in the literature. It arises in applications such as
path-finding for electric vehicles between cities [1], [2],
[15] and package delivery using an unmanned vehicle [5],
[7], where a robot needs to move over long distance when
refuelling becomes necessary. While RF-PF is polynomial
time solvable [4], [6], [13], it remains a challenge to quickly
compute an optimal solution in practice since the robot needs
to simultaneously determine the path, where to make the
stops, and the amount of refuelling at each stop.

This paper focuses on exact algorithms that can solve
RF-PF to optimality. In [6], a dynamic programming (DP)
approach is developed to solve RF-PF to optimality, which
has been recently further improved in terms of its theoretic
runtime complexity [13]. This DP approach identifies a

1 Anushtup Nandy, Zhongqiang Ren and Howie Choset are at Carnegie
Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA. Emails:
{anandy, zhongqir, choset}@andrew.cmu.edu

2Sivakumar Rathinam is with the Department of Mechanical Engineering,
Texas A&M University, College Station, TX 77843-3123. Email: srathi-
nam@tamu.edu

Fig. 1: An illustrative example of RF-PF. This graph consists of
six vertices representing gas stations, each associated with a gas
price and each edge with its fuel expenditure. The objective is to
find a minimum-cost path from start to goal. The figure shows an
optimal solution (ACEF) using a dotted red line and the fuel cost
taken by the shortest path (ABDF). Note that the shortest path does
not incur the lowest fuel cost. Along the optimal solution ACEF,
the cost of refuelling at each vertex is: $10 at A, $14 at C, $18 at
E.

principle regarding the amount of refuelling the robot should
take at each stop along an optimal path, which allows the
construction of a finite state space where dynamic program-
ming can be applied to iteratively find the optimal refuelling
cost at each state until an optimal solution is found.

To expedite computation, this paper develops a new heuris-
tic search algorithm called RF-A∗, which iteratively con-
structs partial solution paths from the start vertex to the goal
guided by a heuristic function. RF-A∗ gains computational
benefits over DP in the following aspects. First, RF-A∗ never
explicitly constructs the entire state space as DP does and
only explores states that are needed for the search. Second,
RF-A∗ uses a heuristic to guide the search, limiting the
fraction of state space to be explored before an optimal
solution is found. Third, taking advantage of our prior work
in multi-objective search [16], [17], RF-A∗ introduces a
dominance rule to prune partial solutions during the search,
which saves computation. RF-A∗ is guaranteed to find an
optimal solution.

We compare RF-A∗ against DP in real-world city maps
of various sizes from the OpenStreetMap dataset. Our results
show that RF-A∗ runs more than an order of magnitude faster
than the DP method as tested in maps with hundreds of gas
stations. While DP takes up to hundreds of seconds to solve
these test instances, RF-A∗ often takes less than a second.
The fast running speed makes it possible to apply RF-A∗ for
online planning on a robot with a limited tank in large urban
areas. Our software will be open-sourced.

1

II. RELATED WORK

Path planning with refuelling has been investigated from
various perspectives. Along a fixed start-goal path, mathe-
matical programming models were developed to decide the
refuelling schedule, i.e., where to make the refuel stop and
the amount of refuelling [4], [18]. Subsequent research [6],
[13] seeks to determine both the path and the refuelling
schedule simultaneously, either from a given start to a goal
or for all-pair vertices in the graph.

Besides planning start-goal paths, another related problem
generalizes the well-known travelling salesman problem and
vehicle routing problem with refuelling constraints [6], [9],
[19]. Instead of finding a start-goal path, these problems seek
a tour that visits multiple vertices subject to a limited fuel
tank. This paper only considers finding a start-goal path.

Recently, due to the prevalence of electric vehicles, several
variants of RF-PF [9], [11] were proposed to plan paths
while considering additional aspects of the vehicle such as
moving speeds [8], arrival times [1], and detailed powertrain
model [2]. To address them, various approaches were de-
veloped, such as dynamic programming [6], greedy method
[10], and learning-based approaches [8], [12].

III. PROBLEM STATEMENT

Let G = (V,E) denote a directed graph, where each vertex
v ∈ V represents a gas station, and each edge (u, v) ∈ E
denotes an action that transits the robot from vertex u to v.
Each edge (u, v) ∈ E is associated with a non-negative real
value d(u, v) ∈ R+, which represents the amount of fuel
needed to traverse the edge from u to v. The robot has a
fuel capacity qmax ∈ R+ representing the maximum amount
of fuel it can store in its tank. Let c : V → [0,∞] denote the
refuelling price per unit of fuel at each vertex in v ∈ V .1

Let a path π(v1, vℓ) = (v1, v2, . . . , vℓ) be an ordered list
of vertices in G such that every pair of adjacent vertices in
π(v1, vℓ) is connected by an edge in G, i.e., (vk, vk+1) ∈
E, k = 1, 2, . . . , ℓ− 1. Let g(π) denote total fuel cost along
the path; specifically, let a non-negative real number a(v) ∈
R+ denote the amount of refuelling taken by the robot at
vertex v, then g(π) =

∑
k=1,2,...,ℓ a(vk)c(vk).

In practice, the robot often has to stop to refuel, which
slows down the entire path execution time. Therefore, let
kmax ∈ Z+, kmax > 1 denote the maximum number of
refuelling stops the robot is allowed to make along its path.

Definition 1 (Refueling Path Finding (RF-PF)) Given a
pair of start and goal vertex vo, vg ∈ V , the robot has zero
amount of fuel at vo and must refuel to travel. The RF-PF
problem seeks a path π from vo to vg such that g(π) is
minimized while the number of refuelling stops along π is
no larger than kmax.

Remark 1 In Def. 1, we only need to consider the case
where the robot starts with zero fuel at vo for the following
reason. If the robot starts with q0 fuel at vo, one can always
construct a new problem where the robot starts with zero fuel

1For vertices v in G where the robot cannot refuel, let c(v) = ∞.

as follows. First, let G′ denote a new graph whose vertex set
is V ′ = V ∪ {v′o}, where v′o is only connected to vo with
d(v′o, vo) = qmax− q0 and c(v′o) = 0. Then, in G′, the robot
starts with zero fuel, and the goal is to find a minimum cost
path π′ in G′ from v′o to vg . Following π′, the robot arrives
at vo with q0 fuel, and the remaining path is the desired
solution. We can also assume c(vg) = 0 since in an optimal
solution, the robot never refuels at the goal vertex and taking
c(vg) = 0 does not change an optimal solution.

IV. METHOD

This section introduces RF-A∗, a heuristic search approach
to find an optimal solution for RF-PF. It initiates at vo
and systematically explores potential paths from vo towards
vg while minimizing the overall fuel cost. The heuristics
help estimate the remaining cost to the goal and guide the
search. RF-A∗ also considers the fuel tank limit qmax and the
refuelling stop limit kmax, by comparing two paths that reach
the same vertex using multiple criteria. During the search,
RF-A∗ maintains an open set of candidate labels that are
to be expanded, similar to A* [14]. It continues searching
until finding an optimal path satisfying the constraints. A toy
example of the search process is provided in Fig. 2.

A. Notations and Background

1) Basic Concepts: In RF-PF, there can be multiple paths
from vo to a vertex v, and to differentiate them, we use the
notion of labels. A label l = (v, g, q, k) consists of a vertex
v ∈ V , a non-negative real number g ∈ R+ that represents
the cost-to-come from vo to v, a non-negative real number
q ∈ R+ that represents the amount of fuel remaining at v
before refuelling. We use v(l), g(l), q(l), k(l) to denote the
respective component of a label. To compare labels, we use
the following notion of label dominance.

Definition 2 Given two labels l, l′ with v(l) = v(l′), label
l dominates l′ if the following three inequalities hold: (i)
g(l) ≤ g(l′) , (ii) q(l) ≥ q(l′) and (iii) k(l) ≤ k(l′).

If l dominates l′, then l′ can be discarded during the
search, since for any path from vo via l′ to vg , there must be
a corresponding path from vo via l to vg with the same or
smaller cost. Otherwise, both l and l′ are non-dominated by
each other. Let F(v), v ∈ V denote the frontier set at v, a set
of labels that reach v and are non-dominated by each other.
Additionally, the procedure CheckForPrune(l) compares l
against all existing labels in F(v(l)).

Similarly to A* search [3], let h(l) denote the h-value of
label l that estimates the cost-to-go from v to vg . We further
explain the heuristic in Sec. IV-B.2. Let f(l) = g(l) + h(l)
be the f -value of label l. Let OPEN denote a priority queue
of labels, where labels are prioritized based on their f -values
from the minimum to the maximum.

2) Review of Dynamic Programming Method [6]: A
major difficulty in RF-PF is determining the amount of
refuelling at each vertex during the search, a continuous
variable that can take any value in [0, qmax]. To handle this

2

Algorithm 1 RF-A∗

1: ComputeReachableSets()
2: ComputeHeuristic(vg)
3: lo ← (vo, g = 0, q = 0, k = 0), f(lo)← 0 + h(lo)
4: parent(lo)← NULL
5: Add lo to OPEN
6: F(v)← ∅, ∀v ∈ V
7: while OPEN ̸= ∅ do
8: pop l = (v, g, q, k) from OPEN
9: if CheckForPrune(l,F(v(l))) then

10: continue
11: add l to F(v(l))
12: if v(l) = vg then
13: continue
14: if k = kmax then
15: continue
16: break
17: for all v′ ∈ GetReachableSet(v(l)) do
18: if c(v′) > c(v) then
19: g′ ← g(l) + (qmax − q(l))c(v)
20: q′ ← qmax − d(v, v′)
21: k′ ← k + 1
22: else
23: if d(v′, v) > q(l) then
24: g′ ← g(l) + (d(v′, v)− q(l))c(v)
25: q′ ← 0
26: k′ ← k + 1
27: l′ ← (v′, g′, q′, k′)
28: g(l′)← g′

29: if CheckForPrune(l′,F(v(l))) then
30: continue
31: f(l′)← g(l′) + h(v(l′))
32: parent(l′)← l
33: add l′ to OPEN
34: return Reconstruct(vd)

difficulty, we borrow the following lemma from [6], which
provides an optimal strategy for refuelling at any vertex.

Lemma 1 (Optimal Refuelling strategy) Given refill
stops v1, · · · , vn along an optimal path using at most kmax

stops. At vg−1, which is the stop right before vg , refill
enough to reach vg with an empty tank. Then, an optimal
strategy to decide how much to refill at each stop for any
n < g − 1 :

• if c(vn) < c(vn+1), then fill up entirely at vn.
• if c(vn) ≥ c(vn+1), then fill up enough to reach vn+1.

The intuition behind Lemma 1 is that the robot either fills
up the tank if the next stop has a higher fuel price, or fills
just enough amount of fuel to reach the next stop if the next
stop has a lower price. By doing so, the robot minimizes its
accumulative fuel cost. A detailed proof is given in [6].

We now summarize the dynamic programming (DP) al-
gorithm for RF-PF from [6]. This DP defines a state space
where each state is (v, k, q) with v ∈ V , k denoting the
number of stops and q denoting the gas level. For each
state, let A(v, k, q) represent the minimal cost to traverse
from vertex v to the goal vg , within k refuelling stops, and
starting with q units of fuel. With the help of Lemma 1,
for each v ∈ V , there is only a finite number of possible
values that q can take, which is bounded by |V |. As a result,

Algorithm 2 ComputeReachableSets

1: Reach(v)← ∅, ∀v ∈ V
2: for v ∈ V do
3: d∗(u)←∞,∀u ∈ V
4: d∗(v)← 0
5: Add v to OPENv

6: while OPENv ̸= ∅ do
7: pop u from OPENv

8: if d∗(u) > qmax then
9: continue

10: else
11: add u to Reach(v)

12: for u′ ∈ GetSucc(u) do
13: if u′ ∈ Reach(v) then
14: continue
15: if d∗(u′) > d∗(u) + d(u, u′) then
16: d∗(u′)← d∗(u) + d(u, u′)
17: add u′ to OPENv

Algorithm 3 CheckForPrune(l,F(v(l)))

1: INPUT: A label l and F(v(l)), the frontier set at vertex v(l).
2: for all l′ ∈ F(v(l)) do
3: if g(l′) ≤ g(l) and q(l′) ≥ q(l) and k(l′) ≤ k(l) then
4: return true ▷ l should be pruned.
5: return false ▷ l should not be pruned.

the state space is finite since each of v, k, q can take a finite
number of possible values. The boundary condition of the DP
method for any vertex v, A(v, 1, q), is governed by a cost of
(dvg(u)− q)∗ c(v) if q ≤ dvg(u) ≤ qmax, and ∞ otherwise.
Then, this method uses the dynamic programming principle
to iteratively compute A(v, k, q) for all possible v, k, q and
returns an optimal solution. In [6], two methods are presented
to compute A(v, k, q). The first method (referred to as the
naive version), evaluates A(v, k, q) for each vertex and stop,
incurring a time complexity of O(kmaxn

3), spending O(n)
time on each state (v, k, q). The second method ameliorates
this complexity to O(kmaxn

2 log(n)) by employing an amor-
tized time of O(n log(n)) per state. We consider the second
method for comparison.

B. Refuel A∗ Algorithm

RF-A∗ (Alg. 1) takes G and qmax, vo, vg , and kmax as
the inputs. It begins by calling Alg. 2 ComputeReachable-
Sets(explained in IV-B.3) to compute the set of all vertices
that the robot can travel to from any vertex u given a full-
tank. Subsequently, to compute the heuristic which gives the
amount of fuel needed to reach vg from any other vertex,
it runs an exhaustive backward Dijkstra search from vg . We
elaborate on the heuristic computation in Sec. IV-B.2. After
the Dijkstra, it initiates the label lo = (vo, g = 0, q = 0, k =
0) at vertex vo with the f -value, f(lo) = h(lo), and inserts
it into OPEN. Moreover, the frontier set F(v) is initialized
as a null (∅) set.

The search process is from Lines 8-30. In each iteration,
the label with the lowest f(l) value is popped from the
OPEN set for further processing. Then this label is checked
for dominance against existing labels in F(v(l)) using

3

CheckForPrune. This procedure employs Def. 2 to compare
the g, q and k values of the popped label against other labels
in F(v(l)).

If the selected label is unpruned, it is added to the
frontier set. Subsequently, the algorithm checks if v(l) = vg ,
which signifies that the label l has established a solution
with minimum cost, and the search process terminates. The
algorithm also confirms whether the kmax stops limit has
been reached. In cases where v(l) ̸= vg and k′ ̸= kmax,
the label is expanded, which generates new labels for all
reachable vertices from v(l) within graph G. This involves
a for loop iterating over each reachable vertex, creating a
new label l′ with new g′, q′, k′. The amount of refuelling
is determined using Lemma 1, and the corresponding ac-
cumulative fuel cost g′ is computed. Finally, the algorithm
employs CheckForPrune to check the for dominance. If l′

is not pruned, then it is added to the OPEN set for future
expansion.

1) ComputeReachableSets: This algorithm finds all ver-
tices v′ ∈ V that the robot with a full tank can reach
from vertex v. This algorithm aims to find all successor
vertices that RF-A∗ needs to consider when expanding a
label. Specifically, Alg. 2, initializes Reach(v), an empty set
for all v ∈ V . With each iteration, it designates a vertex v
and runs a Dijkstra search from v to all other vertices in G
to find vertices that are reachable without refuelling. Line
3-17 is this Dijkstra search process starting from a specific
vertex v. This algorithm involves iterating through vertices
in V and traversing their successors to update the distances.

2) Heuristic Determination: A possible way to compute
the heuristic is to first run an exhaustive backward Dijkstra
search on G from vg to any other vertices in G using d(u, v)
as the edge cost (ignoring the fuel tank limit of the robot
and the refuelling cost). After this Dijkstra search, let dvg (v)
denote the cost of a minimum cost path from v to vg . Let
cmin := minv∈V−{vg}(c(v)) denote the minimum refuel cost
in G. Then, let h(l) = max{(dvg − q(l))cmin, 0} be the h-
value of label l. When computing this heuristic, the tank limit
of the robot is ignored and the fuel price at any station is
a lower bound of the true price at that station. As a result,
h(v) provides a lower bound of the total fuel cost to reach
vg from v. We therefore have the following lemma.

Lemma 2 (Admissible Heuristic) The heuristic, h(l) =
max{(dvg − q(l))cmin, 0}, is admissible.

3) CheckForPrune(l, v(l)): This can be seen in Alg. 3.
It is responsible for the dominance check for each label
l against all labels contained in F(v(l)) of a vertex v.
CheckForPrune checks the label for dominance using Def. 2.
Alg. 3 operates within the frontier set F , with its efficiency
determined by the size of |F(v(l))|, leading to a complexity
of O(|F(v(l))|).

C. RF-A∗ Example

The working of Alg. 1 RF-A∗ is shown in Fig. 2. It
considers a graph G with four vertices u, v, w, and b. The
source is v, and goal b. The label lo = (v, 0, 0, 0) is initiated

and inserted into the OPEN set. In the first search iteration, as
seen in Fig. 2(b), l0 is popped from OPEN. Since l0 does not
belong to the goal vertex, its reachable vertices are processed
and given labels l1 = {u, 12, 4, 1} and l2 = {w, 10, 0, 1}. To
compute l1, we can see that since c(u) > c(v) robot fills up
the gas tank and then moves to u which causes g(l1) = 12,
q(l1) = 6− 2 = 4 and k(l1) = 1. Alternately, c(w) ≤ c(u),
so the robot only fills up the amount needed to go to w, thus
g(l2) = 10, q(l2) = 5 − 5 = 0 and k(l2) = 1. Both l1 and
l2 are inserted into OPEN as there are no labels to compare
them against. Next, Fig. 2(c), we extract l2 from OPEN,
which has the lowest f -value in OPEN, and follow the
same process for generating labels l3, l4and l5 corresponding
to vertices v, u and b with k(l3) = k(l4) = k(l5) = 2.
Subsequently, we compare them against the labels l0 and
l1 and notice that l3 is pruned by lo, and l4 by l1 using
CheckForPrune. Hence, only l5 is inserted into the OPEN
set, that is, OPEN = {l1, l5}. In the final iteration, seen in
Fig. 2 (d), we pop label l1 from the OPEN since g(l1) has the
lowest value and processes its reachable vertices. We process
and assign labels of l6, l7 and l8 to vertices v, w and b and
set stops k(l6) = k(l7) = k(l8) = 2. Once l6 and l7 are
checked for dominance against lo, l2, we can see that they
get pruned by l0 and l2, respectively. Therefore, only l8 is
inserted into the OPEN set. Finally, in the OPEN set, we see
that g(l8) < g(l5) with k(l5) = k(l8) = 2 = kmax. Hence,
it is popped from OPEN and claimed as an optimal solution.
Therefore, the path and cost being v → u → b and 15.

D. Analysis

In the worst case, RF-A∗ may have the same run-
time complexity as the naive version of the DP algorithm,
O(kmaxn

3). This scenario for RF-A∗ may occur when the
heuristic is absent (e.g. h(v) = 0 for any v ∈ V), dominance
pruning does not occur, and all possible labels are expanded.
However, as shown in Sec. V, in practice, RF-A∗ is often
much faster than the DP method. The following theorem
summarize this property.

Theorem 1 RF-A∗ has polynomial worst-case run-time
complexity.

In Alg. 1, due to Line 14, RF-A∗ never expands a label l
with k(l) = kmax. As a result, RF-A∗ never generates labels
with more than kmax refuelling stops, and the path returned
by RF-A∗ is feasible, i.e., does not exceed the limit on the
number of stops kmax. The following lemma summarizes
this property.

Lemma 3 (Path Feasibility) The path returned by RF-A∗

is feasible.

To expand a label, RF-A∗ considers all reachable neigh-
boring vertices as described in Sec. IV-B.1 and determine
the amount of refuelling via Lines 18-26. With Lemma 1,
the expansion of a label l in RF-A∗ is complete, in a sense
that, all possible actions of the robot, which may lead to an
optimal solution, are considered during the expansion. The
following lemma summarizes this property.

4

Fig. 2: A toy example showing the Refuel A∗ with four vertices. (a) The entire graph has four vertices (v, u, b and w), with fuel cost in
red, fuel spent in blue, qmax = 6 and kmax = 2. The labels associated with each vertex are lvertex = (u, q, g, k). (b) The first iteration
in the search case is where lo is popped from OPEN. Around each vertex, its corresponding label is provided. (c) The next iteration in
the search is provided, where l2 is popped, and (d) shows the last case when l5 is popped. Optimal path is v → u→ b

Lemma 4 (Complete Expansion) The expansion of a label
in RF-A∗ is complete.

During the search, if a label is pruned by dominance in
CheckForPrune, then this label cannot lead to an optimal
solution for the following reasons. If a label l = (v, g, q, k) is
dominated by any existing label l′ = (v, g′, q′, k′) ∈ F(v(l)).
This means that l has a higher cost g ≥ g′, lower remaining
fuel q ≤ q′ and has made more stops k ≥ k′ than l′. Assume
that expanding l leads to an optimal solution π∗, and let
π∗(v, vg) denote the sub-path within π∗ from v to vg . Then,
another path π′ can be constructed by concatenating the path
represented by l′ from vo to v, and π∗(v, vg) from v to vg .
Path π′ is feasible and its cost g(π′) ≤ g(π∗). So, π′ is a
better path than π∗, which contradicts with the assumption.
We summarize this property with the following lemma.

Lemma 5 (Dominance Pruning) Any label that is pruned
by dominance cannot lead to an optimal solution.

We now show that RF-A∗ is complete and returns an
optimal solution for solvable instances.

Theorem 2 (Completeness) For unsolvable instances,
RF-A∗ terminates in finite time. For solvable instance,
RF-A∗ returns a feasible solution in finite time.

Proof: Due to Lemma 1 and that the graph G is finite,
only a finite number of possible labels can be generated
during the search. With Lemma 4, the expansion of a label
is complete, which means, RF-A∗ eventually enumerates all
possible labels. For an unsolvable instance, RF-A∗ terminates
in finite time after enumerating all these labels. For solvable
instances, due to Lemma 3, RF-A∗ terminates in finite time
and finds a label that represents a feasible path.

Theorem 3 (Solution Optimality) For solvable instances,
the path returned by RF-A∗ is an optimal solution.

Proof: When a label l is popped from OPEN and
claimed as a solution by RF-A∗, due to Lemma 2, any other
labels in OPEN and their successor labels cannot lead to a
cheaper solution than g(l). With Lemma 5, the pruned labels
cannot lead to a cheaper solution than l.

Fig. 3: Visualization of the map for Philadelphia, PA, USA, used in
testing. (a) showcases the city road network of Philadelphia, where
the red dots represent the gas stations. We create a “gas station
graph” G = (V,E) for our tests, where V is the set of gas stations,
and each edge is a minimum cost path between the corresponding
gas stations. We create this graph G using a pre-processing step,
and both algorithms (RF-A∗ and DP) runs on this G as opposed to
the original city road network. (b) shows the solution path returned
by our algorithm for one such test case. The agent stops at 5 gas
stations before reaching the destination.

V. RESULTS

A. Testing and implementation

We compare our RF-A∗ against the DP method [6]. Both
are implemented in C++17 and tested on a Ubuntu 20.04
laptop with AMD Ryzen 7 4800h 4.3GHz CPU and 16GB
RAM.

1) Data preparation and testing: We use graphs from
OpenStreetMap dataset over the USA and Europe, collected
using the “osmnx” library in Python. The cities used with the
number of gas stations: Philadelphia, PA, USA (61); Austin,
TX, USA (87); Phoenix, AZ, USA (178); London, UK (258);
and Moscow, Russia (423). We use 20 random start-goal
pairs in each city for testing.

B. Discussion

From the numerical results shown in Fig. 4, we can see
that our algorithm RF-A∗ takes significantly less time than
the DP baseline [6] to execute and find an optimal solution.
The properties of our algorithm which allow for such fast
computation are mainly due to the heuristic function, not
constructing and exploring the entire search space and the
dominance rules, which are explained as follows.

5

Fig. 4: log− log plot for runtime (s) comparison between RF-A∗

and DP baseline

Fig. 5: log− log plot for size comparison between the size of the
mean of the total frontier set size of RF-A∗ calculated over 20 tests
and the mean of the total state space size of the DP baseline.

1) Runtime comparison: RF-A∗ expedites the computa-
tional by avoiding constructing the entire state space. RF-A∗

selectively explores the necessary labels for expansion and
prunes the labels which get dominated. RF-A∗ becomes
increasingly advantageous when searching larger graphs. As
seen in Fig. 4 on the graph with 400+ stations, RF-A∗

achieved a mean run-time of roughly 1s, whereas the DP
took more than 1000s.

2) Search space exploration: The heuristic-guided nature
of our algorithm directs the search process towards more
promising areas of the state space. The dominance rule
introduced in Def. 2 prunes labels during the search process,
expanding fewer labels and reducing the space’s size. Hence
minimizing unnecessary exploration. From Fig. 5, we can
see that the total size of the frontier set, i.e., the sum of
the frontier set at all vertices explored, is approximately 10
times smaller than the DP’s state space size. This addition
helps reduce the computational overhead and keeps the set
of paths to be explored (stored in F) to a minimum, unlike
DP, which constructs the entire state space.

3) Influence of heuristic: To understand the effect of
using the heuristic, we further introduce two variants of the
methods. The first variant is based on the DP method, where
the computation terminates immediately after an optimal
start-goal path is found, as opposed to computing A(v, q, k)

Fig. 6: log-plot of the run-time comparison for RF-A∗ when
heuristic influence is varied from 0 − 100%, and a variant of the
DP algorithm with a termination condition for when the goal vertex
is reached.

for all states as mentioned in [6]. The second variant is based
on RF-A∗, where the “guiding power” of the heuristic is
reduced by multiplying h-values with a weight factor from
[0, 1]. By doing so, we seek to verify the benefit of using a
heuristic to guide the search when solving RF-PF. We used
Phoenix, AZ, USA, with 178 gas stations in this test, and
conducted tests on 20 randomly generated start-goal pairs.

Fig. 6 shows the runtime of both DP with entire state-
space creation as 78s, and DP with early termination as
60s. Allowing early termination of DP after finding the
optimal start-goal path helps reduce the algorithm’s runtime.
However, the DP computation is still expensive compared
to the RF-A∗ method, since RF-A∗ avoids the explicit state
space construction and can use dominance pruning during the
search. We also observe that, for RF-A∗, the heuristic can
expedite the computation from nearly 1s to roughly 0.25s,
which shows the benefit of using a heuristic.

VI. CONCLUSION

This paper investigates the RF-PF problem introduced in
[6] and develops RF-A∗, a fast A∗-based algorithm that
leverages the heuristic search and dominance pruning rules.
Numerical results verify the advantage of RF-A∗ over the ex-
isting dynamic programming approach. For future work, one
can investigate situations with a time constraint on refuelling,
or multi-agent refuelling with constraints on the number of
agents one gas station can attend to simultaneously. One can
also consider using the fast dominance checking techniques
in [16], [17] to further expedite the computation when there
are a lot of non-dominated labels during the search.

REFERENCES

[1] Cedric De Cauwer, Wouter Verbeke, Joeri Van Mierlo, and Thierry
Coosemans. A Model for Range Estimation and Energy-Efficient
Routing of Electric Vehicles in Real-World Conditions. IEEE Trans-
actions on Intelligent Transportation Systems, 21(7):2787–2800, July
2020.

[2] Giovanni De Nunzio, Ibtihel Ben Gharbia, and Antonio Sciarretta. A
general constrained optimization framework for the eco-routing prob-
lem: Comparison and analysis of solution strategies for hybrid electric
vehicles. Transportation Research Part C: Emerging Technologies,
123:102935, February 2021.

6

[3] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[4] Shieu Hong Lin, Nate Gertsch, and Jennifer R. Russell. A linear-time
algorithm for finding optimal vehicle refueling policies. Operations
Research Letters, 35(3):290–296, May 2007.

[5] Mohammadjavad Khosravi and Hossein Pishro-Nik. Unmanned aerial
vehicles for package delivery and network coverage. In 2020 IEEE
91st Vehicular Technology Conference (VTC2020-Spring), pages 1–5,
2020.

[6] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not
to fill: The gas station problem. ACM Transactions on Algorithms,
7(3):1–16, July 2011.

[7] Woojin Lee, Balsam Alkouz, Babar Shahzaad, and Athman Bouguet-
taya. Package delivery using autonomous drones in skyways. In
Adjunct Proceedings of the 2021 ACM International Joint Conference
on Pervasive and Ubiquitous Computing and Proceedings of the
2021 ACM International Symposium on Wearable Computers. ACM,
September 2021.

[8] Longjiang Li, Haoyang Liang, Jie Wang, Jianjun Yang, and Yonggang
Li. Online Routing for Autonomous Vehicle Cruise Systems with Fuel
Constraints. Journal of Intelligent & Robotic Systems, 104(4):68, April
2022.

[9] Chung-Shou Liao, Shang-Hung Lu, and Zuo-Jun Max Shen. The
electric vehicle touring problem. Transportation Research Part B:
Methodological, 86:163–180, April 2016.

[10] Shieu-Hong Lin. Finding Optimal Refueling Policies in Transportation
Networks. In Algorithmic Aspects in Information and Management,
pages 280–291. Springer Berlin Heidelberg.

[11] Florian Morlock, Bernhard Rolle, Michel Bauer, and Oliver Sawodny.
Time Optimal Routing of Electric Vehicles Under Consideration
of Available Charging Infrastructure and a Detailed Consumption
Model. IEEE Transactions on Intelligent Transportation Systems,
21(12):5123–5135, December 2020.

[12] André L. C. Ottoni, Erivelton G. Nepomuceno, Marcos S. De Oliveira,
and Daniela C. R. De Oliveira. Reinforcement learning for the
traveling salesman problem with refueling. Complex & Intelligent
Systems, 8(3):2001–2015, June 2022.

[13] Kleitos Papadopoulos and Demetres Christofides. A fast algorithm for
the gas station problem. Information Processing Letters, 131:55–59,
March 2018.

[14] Judea Pearl. Heuristics: intelligent search strategies for computer
problem solving. Addison-Wesley Longman Publishing Co., Inc.,
1984.

[15] Sepideh Pourazarm and Christos G. Cassandras. Optimal Routing of
Energy-Aware Vehicles in Transportation Networks With Inhomoge-
neous Charging Nodes. IEEE Transactions on Intelligent Transporta-
tion Systems, 19(8):2515–2527, August 2018.

[16] Zhongqiang Ren, Zachary B. Rubinstein, Stephen F. Smith, Sivakumar
Rathinam, and Howie Choset. Erca*: A new approach for the resource
constrained shortest path problem. IEEE Transactions on Intelligent
Transportation Systems, pages 1–12, 2023.

[17] Zhongqiang Ren, Richard Zhan, Sivakumar Rathinam, Maxim
Likhachev, and Howie Choset. Enhanced multi-objective A* using
balanced binary search trees. In Proceedings of the International
Symposium on Combinatorial Search, volume 15, pages 162–170,
2022.

[18] Yoshinori Suzuki. A generic model of motor-carrier fuel optimization.
Naval Research Logistics (NRL), 55(8):737–746, 2008.

[19] Timothy M. Sweda, Irina S. Dolinskaya, and Diego Klabjan. Optimal
Recharging Policies for Electric Vehicles. Transportation Science,
51(2):457–479, May 2017.

7

