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ABSTRACT
Kinematic motion planning using geometric mechanics

tends to prescribe a trajectory in a parameterization of a shape
space and determine its displacement in a position space. Often
this trajectory is called a gait. Previous works assumed that the
shape space is Euclidean when often it is not, either because the
robotic joints can spin around forever (i.e., has an S1 configura-
tion space component, or its parameterization has an S1 dimen-
sion). Consider a shape space that is a torus; gaits that “wrap”
around the full range of a shape variable and return to its start-
ing configuration are valid gaits in the shape space yet appear as
line segments in the parameterization. Since such a gait does not
form a closed loop in the parameterization, existing geometric
mechanics methods cannot properly consider them. By explicitly
analyzing the topology of the underlying shape space, we derive
geometric tools to consider systems with toroidal and cylindrical
shape spaces.

1 INTRODUCTION
Geometric mechanics has been used for gait synthesis and

analysis for a variety of locomoting systems, including ab-
stract models [1], limbless robots [2, 3, 4, 5, 6, 7] and even ani-
mals [8,9,10]. Such work splits the system’s configuration space
into a position space and an internal shape space. These efforts
then describe analytic tools, using constructs such as connection
vector fields and constraint curvature functions [11], to compute

a path in the shape space that induces a desired displacement in
the position space. Typically these shape space paths are cyclic,
and thus are termed gaits. Past work with geometric mechan-
ics views the shape space using charts in a Euclidean space; for
example, when the shape space has two dimensions, its parame-
terization is in R2. This paper considers systems whose internal
degrees of freedom are cyclic and therefore Euclidean parame-
terizations do not capture the true essence of the shape space.

This paper considers shape spaces that are tori or cylinders.
Consider the yellow gait in Fig. 1; it is a cycle in the parame-
terization. However, the green gait appears to be a non-closed
curve in its parameterization, thereby preventing us from using
previously derived gait-design tools.

Additionally, the non simply-connected topology of the true
shape space raises another subtle problem. Recall that a vec-
tor field can be decomposed via the Hodge-Helmholtz decom-
position [12, 13] into two component vector fields: a curl-free
component and a divergence-free component. When integrating
a closed loop in a puncture-free Euclidean space (or Euclidean
parameterization), the curl-free contribution is identically zero
because the curl-free field is conservative in a simply connected
space [12]. However, the curl-free field is not conservative on
non-simply connected spaces, such as a torus, and therefore may
have a non-zero contribution for gaits that wrap around the cyclic
dimensions of the space space.

The contribution of this paper is to develop the calculus to
account for the curl-free contribution of the gait on toroidal and

1 Copyright c© 2018 by ASME



FIGURE 1. Constraint curvature function for a differential drive car
plotted on a torus shape space and its Euclidean parameterization. The
yellow circle is a gait that does not wind around the torus and the the
green line a gait that winds around both cyclic components of the shape
space. The pink curve is a gait for parallel parking maneuver discussed
later in this paper. Red regions are positive (out of the page) and black
regions are negative (into the page). The torus has been “cut” along both
of its cyclical dimensions, so that both points labelled D coincide on the
torus, as do both points labelled C. The pink curve is, on the torus,
a single closed curve. The scaling of the heights and width between
stripes depends on the dimensions chosen for the car.

cylindrical shape spaces and thereby extend the analysis and de-
sign of gaits that wind through cyclical dimensions of the shape
space. In doing so, this paper extends the applicability of the
gait design, analysis, and visualization tools that use connection
vector fields and constraint curvature functions to a larger set of
motions. As an example, using these tools, we can now pro-
vide a differential geometric rationale to common gaits for the
differential drive car. Additionally, this paper takes a new view
at analyzing snake robots: previous related work used sinusoids
as basis functions in a shape space. With the tools derived in
this paper, we can design gaits in a shape space parameterized
directly by amplitude and phase, which makes gait design eas-
ier. Finally, we apply the results of this paper to legged systems,

where we parameterize motions in terms of phase variables rather
than directly on joint angles. These methods allow us to plan for
systems with higher dimensional shape spaces, if some variables
can be linked together by underlying phase variables on S1, such
as a footfall pattern for a legged system.

2 BACKGROUND
Geometric mechanics is a discipline that builds on differen-

tial geometry and classical mechanics [1]. Geometric mechan-
ics leverages the symmetric properties of the locomotion system.
When the system’s inertia can be neglected, the equation of mo-
tion is simplified to the following form (known as the kinematic
reconstruction equation),

ξ =−A(r)ṙ (1)

where ξ is the body velocity, r is the system shape variables (ei-
ther the joint angles or a function of the joint angles) in the shape
space M, and A(r) is called the local connection, a matrix that
maps changes in shape to body velocities. In these systems, no
additional momentum can be built, so the body stops moving
immediately when the joints stop moving. Note that A(r) is a
function of shape r and each row of A(r) represents a vector field
defined over the shape space. This vector field is called the con-
nection vector field [11].

Prior work used the tools of geometric mechanics to find
gaits to move or turn the system in a desirable direction [1, 11,
3, 5, 6, 14]. The displacement of the system ζ (T ) as a result of
executing a gait Φ is therefore computed as the line integral of
the connection vector field along the gait,

ζ (T ) =
∫

Φ

A(r) dr. (2)

where T is the period of the gait. Assuming a Euclidean parame-
terization of a two-dimensional shape space, for instance if joints
have finite limits, one can further apply Green’s form of Stokes’s
theorem to convert this line integral into an area integral,

ζ (T ) =
∫∫

Ω

curl A(r) dr1dr2 (3)

where Ω is the area enclosed by the gait. Now, the displace-
ment of a gait can be determined by integrating the curl of the
connection over an area enclosed by the gait. Likewise, one can
plot the curl of the connection vector field, and then by inspection
prescribe gaits [3], or optimize gaits for displacement or power
per cycle [5, 6]. The curl of the connection vector field is called
the constraint curvature function [11].
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Since we are considering gaits that winds around the S1

component of the shape space, we need to establish terminology
that measures the number of winds. Conventionally, a winding
number is defined by the number of revolutions a closed loop
curve makes in the plane [15]. With slight abuse of notation, we
define the winding number, w ∈ Zm for an m-dimensional space
to be the integer set of times that a path wraps around each S1 di-
mension of that space. This notion of winding number is similar
to that which is defined in [16]. For gaits that have a zero winding
number, the use of the curvature visualization tool is straightfor-
ward, as described in [2]. However, gaits with non-zero winding
numbers do not have a closed curve representation on the param-
eterization of the shape space, so do not enclose a well defined
area. Consequently, the curvature-visualization tools cannot be
used for such gaits.

Moreover, recall the Hodge-Helmholtz decomposition sepa-
rates a vector field into a curl-free component and a divergence-
free component. In a simply connected shape space, the curl-free
component forms a conservative vector field, and sometimes is
referred to as the conservative contribution. When the gait in a
simply-connected shape space is a closed curve, the the path in-
tegral along the curl-free part of vector field does not contribute
to the line integral because the line integral along a closed path
in a conservative vector field is zero. In such a case, only the
divergence-free part of the original vector field needs to be con-
sidered when taking the line integral. This observation will prove
useful when deriving our contribution in this paper.

3 CONSTRAINT CURVATURE FUNCTIONS IN TORUS
SHAPE SPACES
Although successfully applied to a variety of systems, prior

work [11, 4, 2] treated the shape space as simply connected and
Euclidean. Assuming that the shape space is simply-connected,
the curl-free portion of the connection vector field is conser-
vative, and therefore has no contribution to the total displace-
ment. In this section, we show how to explicitly account for both
the curl-free and divergence-free portions of the connection vec-
tor field on a non-simply connected shape space, i.e., the tours.
With the curl-free and divergence-free contributions in-hand, we
demonstrate how to effectively combine them and subsequently
use this to prescribe gaits on a torus.

Consider the connection vector field of a system with a
toroidal shape space, T2 = S1 × S1. First, we plot the vector
field under a chart to a subset of R2, such that every point on the
torus is represented by exactly one point on the chart, except at
the open boundary of the parameterization. This chart “unwraps”
the torus. We can see now that closed gaits on the torus may not
appear as closed on the chart, and could have a variety of wind-
ing numbers. See Fig. 2 for illustrative examples of paths with
different winding numbers on the unwrapped torus shape space.

r1

r2

(1, 1)

(-1, 0)
(1, 0)

(0, 1)

(1, -1)

(0, 0)

FIGURE 2. Various possible shape space winding numbers on a
toroidal shape space, with shape parameters r1 and r2. This is a chart
on a torus, the top and bottom boundaries are equivalent, and the left
and right boundaries are equivalent. Multiple winds around the torus
are possible, and would have larger integer winding numbers.

r1

r2 A

B1

B2

B3

C2

C1

C3

FIGURE 3. Illustration for Lemma III.1

3.1 Curl-free Contribution of Connection Vector
Fields

Lemma 3.1. In the curl-free component of the connection vector
field, gaits with the same winding number have the same line
integral, independent from the starting points and the trajectories
of the gaits.

Proof: Consider a chart of the curl-free component of the
connection vector field in a toroidal shape space, as shown in
Fig. 3. First, we take two gaits A and B; B is composed of three
segments B1, B2 and B3, and both gaits connect the bottom left
and top right corners of the shape space i.e. (0,0) to (2π,2π).
The shape space is parameterized by vector r ∈ S1×S1. These
paths appear open on the chart, but on the torus, the left and right
sides of this chart are connected, and the top and bottom of the
chart are connected. We know that in a conservative vector field,
the line integral along a closed loop is zero.

−
∫

A
A(r)dr+

∫
B1

A(r)dr+
∫

B2

A(r)dr+
∫

B3

A(r)dr = 0
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Similarly, the gait C, which is composed of C1, C2 and C3, forms
a closed loop in the shape space chart, so

−
∫

C2

A(r)dr+
∫

C1

A(r)dr+
∫

C3

A(r)dr = 0

In the underlying shape space, the connection A(r) evaluates to
the same value on the top/bottom and left/right boundaries of this
chart,

lim
r1→0

A(r1,r2) = lim
r1→2π

A(r1,r2), lim
r2→0

A(r1,r2) = lim
r2→2π

A(r1,r2)

Therefore in the limit the following relation holds:

∫
B1

A(r)dr =
∫

C3

A(r)dr,
∫

B3

A(r)dr =
∫

C1

A(r)dr (4)

Substituting these equations leads to the result that

∫
A

A(r)dr =
∫

B2

A(r)dr+
∫

C2

A(r)dr

That is, the line integral of the gait A, and the gait composed
of paths B2 and C2, are equal. Both gaits have the same shape
space winding number. Since this is true for all starting points
and without loss of generality, for all winding numbers, all gaits
with the same winding number have the same displacement. �

3.2 Divergence-free Contribution
From Fig. 5, note that the area enclosed by the gait with

winding number (0,0) is clear, which makes the constraint curva-
ture function technique amenable for designing such gaits. How-
ever, a gait with a non-zero winding number such as the blue gait
in Fig. 3, does not enclose a well defined area on the chart. In or-
der to facilitate the design of such gaits from the curvature func-
tion technique, we use the following procedure. We convert an
apparently open curve into a closed curve, by superposing a path
along the edge of the shape-space connecting the two corners and
simultaneously adding its negative such that the net contribution
to the total line integral is zero.

As a result, the line integral of a gait on the divergence free
part of the connection vector field is computed as the summation
of the line integral of the all five segments. The artificially added
line segments G1 and G2 in Fig. 4, together with the path P of a
gait form a closed curve in the chosen chart. Hence, the line inte-
gral of vector field along this curve is equal to the area enclosed
on the constraint curvature function corresponding to this vector
field. Additionally, the segments R1 and R2 were also added to

=

=

Path on Full Vector Field

Curl-free Component
(closed path, zero total line integral)

Curl-free Component
(precomputed)

+

+ +

Divergence-free Component
(compatible with CCF)

Divergence-free Component
(precomputed)

Path on Full Vector Field

(1) (2)

(3) (4)

P P

PC

PNC RNC2GNC2

GNC1 RNC1

RC2

RC1

GC2

GC1

R2

R1

G2

G1

FIGURE 4. The line integral along path P on the vector field can be
equivalently written as the sum of the line integral along P and the line
integrals along the boundary in both the forwards directions (R1 and R2,
red) and the reverse directions (G1 and G2, green). That summation can
be further decomposed into four components under a Hodge-Helmholtz
decomposition. (1) a closed loop in the conservative (curl-free) com-
ponent of the vector field, which has a zero net line integral. (2) a line
integral along the reverse direction in the conservative component. (3)
a closed loop in the divergence-free component, visualized with a con-
straint curvature function (CCF) and computed with a body velocity in-
tegral. (4) a line integral along the reverse direction in the divergence-
free component. Components (2) and (4) can be precomputed and used
for all paths P.

annul the extraneous contribution from the integral along G1 and
G2. Therefore, the total line integral is the sum of the area in-
tegral and the line integral of the two negating line segments R1
and R2.

Refer to Fig. 4 for an explanation of how we form a closed
loop. We begin with an arbitrary path, such as the path P in the
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upper left panel of Fig. 4. This curve is drawn on a chart of the
torus where the left and right boundaries, and the bottom and top
boundaries are respectively identified with each other. The curve
P is not closed in the chart but is indeed closed on the torus.
We next close the loop on the chart by drawing a path along the
boundaries of the chart (the green paths G in Fig. 4). To account
for the extra displacement that will be generated by integrating
along the added paths, we use the superposition principle and add
equal and opposite paths (the red paths R in Fig. 4).

3.3 Contributions from both Curl-free and
Divergence-free Vector fields

The path integral of the vector field along the gait is the sum
of the following components: two from the curl-free part of the
vector fields and two from the divergence-free part of the vector
fields, i.e.,

i A closed loop in the curl-free field, which evaluates to zero
(Fig. 4(1), PC +GC1 +GC2)

ii A set of paths travelling the same winding number as the gait,
in the curl-free field. (Fig. 4(2), RC1 +RC2)

iii A closed loop in the divergence-free field, which includes
the gait and a path traversing the chart boundary. (Fig. 4(3),
PNC +GNC1 +GNC2)

iv A set of paths travelling the same winding number as the gait,
in the divergence-free field. (Fig. 4(4), RNC1 +RNC2)

The first component (i) is zero and the third component (iii)
can be determined using constraint curvature functions, as de-
scribed in Sec. 2. Note that the second (ii) and fourth (iv) com-
ponents are the same path. The contribution from the second and
fourth components can be determined by simply computing the
path integral of this path in both the curl-free and divergence-free
fields, and then summing the two results. Or, we can compute the
path integral of this path in the original vector field. Finally, the
full body velocity integral is the sum of these components.

We remark that for gaits with non-zero winding numbers,
it is not important whether the integral is taken above/below
or to the left/right of the gait path. To show this, consider
the paths around the four sides of a chart on a toroidal shape
space, as shown in Fig. 5. The paths P1, P2, P3, and P4 form a
closed loop. Yet, the left and right sides are the same path on
the torus,

∫
P1

A(r)dr = −
∫

P3
A(r)dr and similarly,

∫
P2

A(r)dr =
−
∫

P4
A(r)dr. As a result, the total path integral is zero, and so

by Stokes’ theorem, the area integral of the path around the chart
boundary is zero. Further, for a gait with a non-zero winding
number that divides the space, the area integrals on the two sides
of the gait must sum to zero. Consider for example the gait G(1,1)
that belongs to (1,1) winding number family. The integral of
curl of the connection vector field over the area enclosed below

P1

P4 P2

P3

G(1,1)

G(1,0)

r1

r2

FIGURE 5. Paths drawn on a chart of a toroidal shape space. The
paths P form a closed loop, but since the sides of the torus are connected
on the underlying manifold,

∫
P1
=−

∫
P3

and
∫

P2
=−

∫
P4

. The total path
integral of P is zero, and so the area integral of P is zero. Further, for
gaits with non-zero winding numbers like G(1,1) and G(1,0), the area
integrals above and below will be the same magnitude but opposite sign,
as they must sum to zero.

the gait is

Ibelow =
∫∫

Ω2

curl A(r) dr1dr2

=
∫

P1

A(r)dr+
∫

P2

A(r)dr−
∫

G(1,1)

A(r)dr (5)

Likewise, the integral of curl of the connection vector field over
the area enclosed above the gait is

Iabove =
∫∫

Ω1

curl A(r) dr1dr2

=
∫

P4

A(r)dr+
∫

G(1,1)

A(r)dr+
∫

P3

A(r)dr (6)

Summing up Eq. 6 and Eq. 5 gives:

Itotal = Ibelow + Iabove

=
∫

P1

A(r)dr+
∫

P2

A(r)dr−
∫

G(1,1)

A(r)dr

+
∫

P4

A(r)dr+
∫

G(1,1)

A(r)dr+
∫

P3

A(r)dr

=
∫

P1

A(r)dr+
∫

P3

A(r)dr

+
∫

P2

A(r)dr+
∫

P4

A(r)dr

= 0 (7)
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=⇒
∫∫

Ω1

curl A(r) dr1dr2 +
∫∫

Ω2

curl A(r) dr1dr2 = 0

=⇒
∫∫

Ω1

curl A(r) dr1dr2 =−
∫∫

Ω2

curl A(r) dr1dr2 (8)

3.4 Gait planning steps
To design a gait for a system with a torus or cylindrical shape

space, we have developed the following procedure:

a. Compute the connection of the system and the connection
vector field, either analytically [4] or empirically [3]. Select
a chart that covers the space once, e.g., where each cyclical
shape variable is plotted on (−π,π).

b. Compute the path integral along one cycle of each cyclical
shape variable. For convenience, we use the bottom of the
chart such as the path R1 and right of the chart such as R2.
This path integral in the full vector field, is the sum of the
curl-free (item ii in Sec. 3.3) and divergence-free compo-
nents (item iv). Note the sign of each line integral, as this
will influence the choice of gait.

c. Plot the curl of the connection vector field as a constraint
curvature function.

d. Choose a gait that maximizes the positive or negative area
enclosed by the gait path and the boundary of the chart. We
choose the gait winding number and path to maximize pos-
itive or negative area based on the chart boundary line inte-
gral from step (b).

e. Sum the contributions from the boundary line integrals, mul-
tiplied by their winding numbers, with the constraint curva-
ture function area integral.

For example, if the boundary line integral for r1 is L1 where
(L1 > 0), and for r2 is negative, (L2 < 0) we may choose a gait
with a winding number w = (1,−1) then look for gaits that en-
close a positive area. The resulting gait would have a body ve-
locity integral (an approximation of the net displacement) char-
acterized by

ζ (T ) =
∫

Φ

A(r) dr = w1L1 +w2L2 +
∫∫

Ω

curl(A(r)) dr1dr2

where Ω is the area enclosed by the gait Φ. This method can
be applied to cylindrical shape spaces in which only one shape
parameter is cyclical. In these cases, the winding number of non-
cyclical shape parameters must be zero, but otherwise the above
method remains unchanged. Similarly, gaits can still be designed
on torus or cylinder shape spaces with winding number zero for
all shape parameters, in which case this method produces the
same results as in prior work.

yb

xb θb
α2

α1

FIGURE 6. Differential drive car model.

4 DIFFERENTIAL DRIVE CAR EXAMPLE
4.1 Model and Method

The kinematic differential drive car’s model has been stud-
ied in past geometric analysis. This model has shape variables
r1,r2, the rotation angles of the left and right wheels of the car.

In [11], the differential drive car was analyzed in the south
pointing chariot frame, a frame that counter-rotates with respect
to body frame by an angle θ = r1− r2. In this frame, the lo-
cal connection for ξθ is nullified and thus makes the constraint
curvature function integration in x or y axes in body frame equiv-
alent to the displacement in world frame. Assuming the width of
the car to be 1 unit and the radius of the wheel to be 2 units, the
resulting local connection is given by:

ξ =

 cos(r1− r2) cos(r1− r2)
sin(r1− r2) sin(r1− r2)

0 0

 ṙ. (9)

To analyze and design gaits, we first compute the constraint
curvature function of the system by using Stokes’ Theorem based
on the local connection Eq. 9. In Fig. 1, we visualize the com-
puted constraint curvature function for displacement along y axis.

The most obvious gait for a differential drive car is both
wheels rolling forward as this leverages the full range of the joint
and produces maximal displacement per joint revolution. Such a
gait would be represented by a straight path through the shape
space like the green path in Fig. 1.

4.2 Gait Design on Torus
Our objective in gait design is to determine the sequence of

periodic wheel rotations that generate maximum displacement
per cycle. This is nothing but the sum of two components: (1)
The curl of the connection vector field over an area enclosed by
a curve (yet to be determined) and the chart boundaries, and (2)
the line integral of the connection vector field along the chart
boundary.

For example, the goal for a parallel parking gait is to find a
curve on the constraint curvature function that enclose the maxi-
mum area integral in the xb direction. In Fig. 1, the red and the
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FIGURE 7. Differential drive car executing a parallel parking gait

yb
xb

θb
α6

α1

FIGURE 8. The snake-like swimmer model used in Sec. 5.1. This
planar model swims in a viscous fluid. As a body frame, we choose the
“average” body frame, taken from the average joint angles and average
link locations.

black area correspond to opposite signs of the constraint curva-
ture function’s value. By adding lines along the boundary of the
chart and using the method mentioned in previous sections( 3.4),
the pink curve, which traverses configurations “A”, “B”, “C”,
“D”, “B”, “A” in sequence, is the result obtained that maximizes
the enclosed area integral, and the displacement in y direction is
4π .

If we visualize the motion of the car along this curve in Fig 7,
it is an intuitive optimal gait for parallel parking by turning the
car by 90◦, going straight and then counter-turning 90◦. This gait
has a winding number of (1,1).

5 SNAKE-LIKE SWIMMER EXAMPLE
5.1 Model and Method

The N-link planar low Reynolds number swimmer has
served a fertile prototype for geometric gait design. The total
configuration space Q of the planar swimmer can be split into a
position space G and an internal shape space M, i.e., Q = G×M
[17]. Any element g ∈ G, where in our case G = SE(2), repre-
sents the position and orientation of the body frame of a refer-
ence link on the swimmer with respect to the world frame. The
internal shape space M = ∏

N−1
i=1

(
S1
)

is characterized by angles
(α1, . . . ,αN−1). With this natural splitting, we can derive the
kinematic reconstruction equation (10), that relates changes in
the internal shape of the swimmer to its motion in the inertial
frame. A detailed derivation of the equations of motion for this

FIGURE 9. The connection curvature function in the the xb (forward)
direction for a seven-link swimmer. This function is created from the
serpenoid equation parameterization in Eq. 11

system can be found in [4],

ξ =−A(α)α̇ (10)

where A(α) ∈ R3×N−1 is known as the local form of a con-
nection. It maps shape velocities to body velocities: A(α) :
∏i TαiS1 −→ se(2). Eq. (10) is known as the kinematic recon-
struction equation.

To coordinate the many joints using a smaller number of
parameters, a shape basis function called the serpenoid curve
[18] is employed, prescribing the angle αi of each joint i ∈
{1,2, . . . ,N−1} in the swimmer as

αi = σ1 sin(Ωi)+σ2 cos(Ωi) (11)

where Ω is the spatial frequency of the curve, and the
weights σ are shape parameters that describe the sine and co-
sine components of the curve. When the weights σ are varied
cyclically, a travelling wave gait can be created and the system
swims forward. For instance, a gait with a constant amplitude
is represented as a circle in this shape space. In past works us-
ing constraint curvature functions, gaits are formed from a cycle
in the w shape space, that is, with r = [σ1,σ2]

T . The local con-
nection A(r) can be rewritten in terms of the new shape basis
parameters [4]. But, a gait with two shape variables can also be
parameterized by a reciprocating phase and an amplitude [19].
For the serpenoid swimmer, we can therefore reparameterize the
gait Eq. (11) as a travelling wave with variable amplitude,

αi = A cos(Ωi−φ) (12)
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FIGURE 10. The connection curvature function, on an unwrapped
cylinder, in the the xb (forward) direction for a seven-link swimmer.
This function is created from the serpenoid equation parameterization
in Eq. 12. The paths drawn onto this plot represent gaits described in
Sec. 5.2

with amplitude A =
√

(σ2
1 +σ2

2 ) and phase φ = tan−1(σ2/σ1).

In this form, the shape space is r = [φ ,A ]T . The phase can be
viewed as cyclical; αi(0,A ) = αi(2π,A ) so we can consider
φ ∈ S1. Fig. 10 depicts the constraint curvature functions of the
swimmer represented on the cylindrical parameterization of the
shape space. We used Ω = 2π

N−1 , N = 7 links, for these simula-
tions.

5.2 Gait design on a cylinder

In this shape space, we can construct gaits with large body
velocity integrals. To facilitate gait design, we can now as-
sume that the phase variable φ increases constantly in time as
this generates a traveling wave along the swimmer’s backbone.
The search for a gait in this space is thus reduced to selecting a
cyclical amplitude, a path from one side of the chart to the other,
which encloses a net area below the curve. The simplest way to
select this curve is to chose a constant amplitude represented as
the solid black line in Fig. 10. However, gaits with larger dis-
placements can be found by allowing a variable amplitude. We
can use the procedure described in Sec 3.4, along with numeri-
cal optimization (such as that described by [5]) to design a profile
for amplitude that produces more displacement. Out of the shape
parameters A and φ , only A needs to be chosen as a function
of time. Representing the curvature as a function of A and φ ,
allows us to pick a region and its boundary on the height func-
tion plot that can serve as an initial seed in a numerical optimizer.
One such curve is the red curve shown in Fig 10.

-α1

α2

yb
xb θb

L
W

R

FIGURE 11. Hexapod model. Each leg has two degrees of freedom:
a joint at its base, and a raise/lowering of the foot. Red areas represent
full contact with the ground, and white represents no contact. The legs
are coordinated in an alternating tripod gait. We used body length L = 1,
width W = 0.3, and leg length R = 0.3.

6 HEXAPOD EXAMPLE
Many locomoting systems, such as walking robots, rely on

making and breaking contacts with the ground. While related
previous work [9] presented a method to include contact states
into a geometric mechanics model, there has not been a method
to encode those contacts within a constraint curvature function.
Here we introduce a method to include the footfall pattern, the
contact pattern describing the stance or flight phases of the feet
in the shape basis parameterization and the constraint curvature
function. This allows us to plan gaits for a given footfall pat-
tern, and investigate the limb coordination needed for effective
locomotion.

We introduce a simple hexapod model, where each leg i has
a single hip joint with angle αi and foot contact value Ci. We
restrict the legs to an alternating tripod gait, common in both
hexapedal arthopods [20] and robots [21, 22]. To form an alter-
nating tripod gait, we link the joint angles for legs 1, 3, 5 to those
of legs 2, 4, 6. The corresponding linear shape basis functions
would be:

β1 = [0,1,0,1,0,1]T

β2 = [1,0,1,0,1,0]T

α = β1κ1 +β2κ2

(13)

where the shape basis parameters correspond to the tripod angles,
r = [κ1,κ2]

T ,w ∈ R2. We model the system locomoting through
an overdamped viscous media, where the equations of motion are
derived in the same manner as described in Sec. 5.1. This would
correspond to feet moving through viscous or granular media like
sand or mud, where the feet take a finite time to extract or place
in the media. While a more realistic model would be a resistive
force theory model for granular media [2, 10] could be applied,
we choose a linear drag law in this example for simplicity.

8 Copyright c© 2018 by ASME



In order for a contact pattern to be included in the local
connection, it must be parameterized in terms of only the shape
parameters r and may not include their derivatives, so that the
equations of motion can be written in the form of 1. However,
we observe that with the shape basis parameterization in Eq. 13,
it is not possible to create a contact pattern function solely in
terms of the shape parameters and use methods presented by
prior work. For instance, the gait would need to pass through
the point r = [0,0] twice per cycle, with different contact states
depending on whether the foot is moving forward or backward.

To analyze an alternating tripod gait with constraint cur-
vature functions, we can reparameterize the shape space using
cyclical phase variables, φ ∈ T2, where the tripods are coordi-
nated with shape basis functions,

βφ1 = [1,0,1,0,1,0]T sin(φ1)

βφ2 = [0,−1,0,−1,0,−1]T sin(φ2)

α = βφ1 +βφ2

(14)

in which each shape bases βφ are a nonlinear function of shape
parameters φ . The foot contact function can then be expressed

Ci =

{
0 0≤ φi <

π

2 ,
3π

2 ≤ φi < 2π

1 π

2 ≤ φi <
3π

2
(15)

where Ci is the contact state of tripod i ∈ {1,2}.
By creating a contact function in terms of shape variables,

we allow the footfall pattern to be implicitly encoded in the con-
straint curvature function for any gaits created in terms of the
shape basis parameters. The connection can be expressed in
terms of the new shape parameters r = [φ1,φ2]

T , and the con-
straint curvature functions drawn. We are now able to plan a gait
wrapping around the toroidal shape space. The constraint curva-
ture function and a gait are shown in Fig. 12.

The model used in this example does not correspond pre-
cisely to any realistic animal or robot, but instead illustrates
the process of gait planning on non-euclidean shape spaces by
reparametrizing the shape with phase variables. This allows us to
include additional degrees of freedom, synchronized to the two
primary shape variables via footfall patterns, and still visualize
or optimize the gait efficacy with constraint curvature functions.

7 DISCUSSION
We have shown how constraint curvature function-based gait

analysis can be applied to cylindrical or toroidal shape spaces. As
a consequence, we are able to analyze a broader class of systems
and gaits by parameterizing the coordination among multiple de-
grees of freedom with cyclical phase variables. While we chose
to explore this new method on three example systems, there are

0 2π
0

2π

ϕ2

ϕ1

FIGURE 12. The hexapod constraint curvature function for forward
locomotion, with one possible gait drawn as a path in blue. The under-
lying shape space for this parameterization is a torus. The feet interact
with the environment through a linear isotropic drag with viscous drag
constant of 100 in both the translation and rotation directions.

many others to which this work is applicable, such as the Pur-
cell three link swimmer parameterized by amplitude and phase
as in [19], or a kinematic Ackerman car.

In some sense, since all gaits are cyclical, it is possible
to write some parameterization of shape variables in terms of
some combinations of amplitudes and phases for any system,
and for those with many possible contact states, for any contact
pattern. Such a reparameterization, followed by constructing a
constraint curvature function, means that gaits formerly form-
ing close loops on Euclidean spaces can be “unrolled” under a
change to non-euclidean variables. One consequence of this un-
rolling is that gait construction could now be conducted in what
is effectively a lower dimensional space, with the assumption
that the phase variables are constantly increasing. For example,
related past work [3, 4] constructed gaits for snake-like swim-
mers by choosing points in the Euclidean shape space that form
a closed loop. By reparametrizing to a cylindrical shape space,
the gait design problem can be posed as finding a path across
the shape space that starts and ends at the same amplitude, and
choosing one amplitude value for each point in the phase.

8 CONCLUSION
The three systems we have analyzed in this paper are meant

to exemplify the range of systems to which our methods are ap-
plicable. In future work we will apply these ideas to study other
robotic and biological models. For instance, many animals lo-
comote through sand and mud, on flat and sloped surfaces. Past
related work revealed that limb-tail coordination is necessary for
effective locomotion, especially on sloped surfaces [10]. With
our new tools, we can study salamander and lizard locomotion

9 Copyright c© 2018 by ASME



with various footfall patterns and on sloped granular media [23].
We will continue to improve constraint curvature function-

based gait optimization for systems with cyclical phase variables.
In systems with high-dimensional shape spaces, our method
could help investigate optimal coordination strategies and foot-
fall patterns, potentially using tools like shape-basis [4] or ge-
ometric gait optimization [6]. We will investigate the applica-
tion of these methods to systems with continuous rotation com-
ponents. For instance, we can now analyze Purcells’ three link
swimmer with no joint limits, or systems with propellers along-
side fins and an actuated spine, to create new types of robots
swimming at low Reynolds numbers. Our results also reveal an-
other insight: the topological structure of the shape space is a
result of the parameterization chosen, and is not necessarily a
property of the system. In future work we hope to discover rules
about which shape space topologies apply to a given system, and
to explore how geometric methods can be applied to any shape
space topology.
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