
Deformed State Lattice Planning

Zhongqiang Ren1, Chaohui Gong2 and Howie Choset2

Abstract— Search-based planning that uses a state lattice has
been successfully applied in many applications but its utility is
limited when confronted with complex problems represented
by a lattice with many nodes and edges with high branching
factor. However, in many seemingly complex problems, proper
“form-fitting” can reduce the number of nodes and edges
needed to represent the problems, provides a concise state
lattice and therefore simplifies the computation. This paper
proposes a planning framework which strikes to identify concise
representations of problems, creates such “form-fitting” state
lattice on which a more concise search can take place. In
a sense, we take a conventional state lattice and map it
onto a deformed space, and then the motion primitives and
heuristics follow. Since the contribution of the paper is not the
search approach but rather the means by which the lattice
is deformed, any search-based planner can then be easily
changed to a corresponding deformed version with no increase
in time complexity. This paper demonstrate the benifits of the
approach which includes 1) planned path can be followed with
few changes in motion primitives and thus can provide global
smoothness of planned path; 2) fewer states are expanded and
thus shorter time to search solution in state space is required,
and 3) fewer states are expanded and thus less memory is
required to save the state lattice. We demonstrate the benefit
of the proposed approach in illustrative toy examples, as well
as robot experiments.

I. INTRODUCTION

Search-based motion planning methods, most notably A*
[8] and its variants [6], [7] as well as state-lattice planning
[2], have been successfully applied in many applications.
However, many complex problems require a state lattice
(see Section II for detailed description) with a fine spatial
resolution, a large number of states and large branching
factors to ensure enough states and edges lie in the free
space, which in turn leads to rapid growth in planning time
and memory consumption [10]. For example, as shown in
figure 1, a naive state representation of a multi-layer elliptical
helix corridor using a three-dimensional state lattice will
occupy lots of memory and make it difficult for search-based
planning algorithms.

To remedy the situation, great efforts have been invested
in designing heuristics in order to guide the search along
some low dimensional space. Rayner et al. [3] embeds state
space into an Euclidean space by using manifold learning
techniques, while Gochev et al. [4] plans with adaptive
dimensionality.

1 Zhongqiang Ren is with the Department of Mechanical En-
gineering and the Robotics Institute, Carnegie Mellon University,
zhongqir@andrew.cmu.edu

2 Chaohui Gong and Howie Choset are with the Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA chao-
huig@cmu.edu & choset@cmu.edu

(a) (b) (c) (d)

Fig. 1: Real robot implementation on an elliptical helix. (a)
Mobile robot moveing on the elliptical helix corridor. (b)
The regular state lattice. (c) Mapping diagram between the
regular space and deformed space (d) The deformed state
lattice and planned path.

Typically, for many robot applications, it is rather straight-
forward to define a state lattice based on a Euclidean
parameterization of the free space. The approach described
in this paper deforms such a state lattice representation to
fit a proper submanifold of the free space, thereby directly
producing a more concise representation of the environment.
Using the aforementioned example, as shown in Figure 1,
three-dimensional lattice representation of this space would
require many nodes and edges to capture the free space of
environment, i.e., the points on the two-dimensional helix.
However, the surface of the elliptical helix is a 2 dimensional
manifold and topologically equivalent to a rectangular space.
One can therefore map a state lattice, defined on the two-
dimensional rectangle, onto a state lattice that naturally
embeds into the two-dimensional helix, which reduces com-
putation burden and produces smoother paths for the robot
to follow.

To formalize the idea, in this work, we propose a planning
framework called Deformed State Lattice Planning (DSLP),
which is composed of several steps: 1) find a proper low
dimensional form-fitting state lattice representation of the
environment, 2) deform state lattice, motion primitives, costs
and heuristics and 3) perform a deformed search-based
planner on the low dimensional space.

II. RELATED WORKS

A. State lattice planning

A state lattice [1], [2] is a set of states and connections
between states, where the states are obtained by discretizing
the configuration space and the connections between states
are feasible paths generated by taking the nonholonomic
constraints of the system into consideration and is some-
times called motion primitives. With state lattices, a motion

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 6307

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

planning problem is converted to a graph search problem
and the optimal path can then be found on the graph with a
heuristic search planner like A* or its variants.

Although state lattice planning is resolution complete, it
becomes inefficient when representing problems with large
state lattices with fine resolution and large branching factor.

B. Heuristic design

To overcome the high resolution large state lattice repre-
sentation problem, lots of work have been done to design
effective heuristic to guide the search. Euclidean heuristics
(EH) [3] and its variants [5] are among this class. EH
embed the state space graph into an Euclidean space using
manifold learning techniques and use the Euclidean distance
as heuristics for the state space search to acquire faster speed
and memory efficiency.

However, EH requires a lot of computational memory and
time to embed states into an Euclidean space off-line, while
DSLP amortizes the effort into every search iteration after
having the mapping function and the time complexity of the
planner remains the same.

III. METHOD

In this section, we first propose a general framework for
DSLP and later illustrate concepts with several examples
including the set of rigid body transformation, circular sector
and elliptical helix. As we are primarily interested in mobile
robots, we assumed the state space is either SE(3) or SE(2),
but the proposed framework can be easily applied to config-
uration space with arbitrary number of dimensions.

To further clarify, we list our definitions here. We define
a regular state lattice (regular space) to be a uniformly
distributed state lattice as in previous work [1], which is
exemplified in Figure 1b. We refer a deformed state lattice
(deformed space) to be the set of discretized configurations
and motion primitives that is mapped from regular state
lattice, which is shown in Figure 1d. We use symbols without
prime, for example x, to indicate variable or vector that lies
in regular space and primed symbols, for example x′, to
indicate variable or vector that lies in deformed space.

A. Deformation of a state lattice

Assume we have a smooth mapping function f : x 7→ x′,
where x ∈ U, x′ ∈ U ′, U ′ ⊆ SE(3) and U is a
diffeomorphism of U ′. This function will map a state vector
x in regular space U to a state x′ in a deformed space U ′,
which is a manifold, by x′ = f(x).
f is required to be smooth, thus, the differential of f , also

called Jacobian, is a map df : TxU → Tx′U ′, where TxU
and Tx′U ′ are the tangent spaces at x and x′ in U and U ′

respectively, as shown in Figure 1c. And motion primitive
is defined as a map m : [0, 1] → U . Its time derivative
ṁ(t) ∈ TxU , can be mapped to ṁ′(t) ∈ Tx′U ′, by ṁ′(t) =
df (ṁ(t)).

Evaluating the cost of a path is essential in search based
planning. Here we define the cost of motion primitive in

regular space by a positive definite matrix M as

C =

∫ T

0

ξ(t)TMξ(t)dt (1)

ξ(t) =
(
m(t)−1ṁ(t)

)∨
(2)

where ξ(t) ∈ se(3) and ∨ is unhat operator.
After the deformation, the cost of deformed motion prim-

itive becomes

C ′ =

∫ T

0

ξ′(t)TMξ′(t)dt (3)

ξ′(t) =
(
f (m(t))

−1
df (ṁ(t))

)∨
. (4)

B. Deformation of nonholonomic constraints and heuristic

Many mobile robots are subject to physical constraints that
limits the allowable directions of motion. These constraints
can be handily implemented as Pfaffian constraints in the
form of

ω′(x′)ẋ′ = 0, (5)

where ω′ indicates that the constraints are in deformed space,
which is the space where robot motions are executed. These
constraints equations can also be mapped back to regular
space correspondingly by ω′(f(x))df(ẋ) = 0, which can be
formulated in regular space as

ω(x)ẋ = 0 (6)
ω (x) = ω′ (f (x)) df. (7)

If we want to design the motion primitives in regular space
but executed in deformed space, then we can use equation
(7) to design motion primitives in regular space to make
sure that the nonholonomic constraints in deformed space
is fulfilled. If we already have a set of motion primitives
in regular space, we can use equation (5) to check if the
motion primitives are valid. If not, then the state lattice will
lose the connection between the two states connected by that
motion primitive after deformation.

The heuristic also need to be mapped between two space.
In previous work, a common choice of heuristic for a state
lattice planning problem is the Euclidean distance between
two states h(x) = ‖x − xgoal‖. In DSLP, we need to plan
motion in deformed space and the heuristic becomes the
Euclidean distance between two deformed states

h(f(x)) = ‖f(x)− f(xgoal)‖. (8)

This heuristic is an underestimate for the optimal path cost
from state x to xgoal and thus guarantee the optimality of the
planner, but this heuristic may have modest guiding power.
More discussion about heuristic can be found in later section.

C. Examples

1) Deformation on a circular sector: Nonlinear mapping
function f : (x, y, θ) 7→ (x′, y′, θ′) will map a rectangle state
lattice to a circular state lattice. We define some deformation
parameters:
xc, yc - the deformation center in rectangular state lattice,

6308

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

βs, βe - circular starting and ending angle,
H - grids length,
rc - the deformation radius,
βc - the angle of deformation center,
γ - the angle resolution,
where

rc =
√
x2c + y2c , βc =

βs + βe
2

, γ =
βe − βs
H − 1

. (9)

Now we can give our deformation function x′ =
(x′, y′, θ′) = f(x, y, θ) = f(x), x,x′ ∈ SE(2) based on
these parameters

x′ = (rc + x− xc) cos(βc + (y − yc)γ)

y′ = (rc + x− xc) sin(βc + (y − yc)γ)

θ′ = θ + arctan 2(y′, x′) = θ + βc + (y − yc)γ. (10)

Now we can compute the deformation of motion primitives
from a rectangular state lattice to a circular state lattice using
equation (4), where df is.

df |x =

cos(βy) −rx sin(βy) 0
sin(βy) rx cos(βy) 0

0 γ 1

 (11)

βy = βc + (y − yc)γ, rx = γ(rc + x− xc)

Fig. 2: Example of deformation of state lattice and motion
primitives. The state lattice in red is the regular rectangular
one with orientation of zero radian while the state lattice in
blue is the corresponding deformed one with same orienta-
tion. The green curve in both sub-figures show some motion
primitives before and after deformation. For a differential
drive car, among the motion primitives shown in figure, only
the straight move and turn in place motion primitives are still
valid after deformation.

The Pfaffian constraint for differential drive car in de-
formed space is ω′(x′) = (sin θ′,− cos θ′, 0) and the one
in regular space can be computed by multiplying it with
df |x. In this case, as shown in Figure 2, some pre-designed

motion primitives in regular state lattice will become invalid
after deformation.

D. Deformed A* Planner

The deformed A* planner is shown in Algorithm 1, which
is same as the original A* planner with the only differences
in getCost() and getHeuristic() functions. In original A*
planner, getCost() returns a constant cost related with the
motion primitive by looking up a pre-computed table and
takes constant time. Here, getCost() uses Equation (3) and
takes constant time by discretizing the integral into a sum
of N parts, where N is constant. Similarly, in original
A* planner, getHeuristic() computes the heuristic using
Equation (8) or 14 in later section. Both can be computed in
constant time.

Algorithm 1 Deformed A* Planner

1: procedure EXPAND(state)
2: for each motion primitive neightbor n of state do
3: gnew ← g(state) + getCost(state,n)
4: if gnew < g(n) then
5: g(n)← gnew
6: parent(n)← state

7: f(n)← g(n) + getHeuristic(n, goalState)

8:

9: procedure A* SEARCH(startState, goalState)
10: parent(startState)← ∅
11: g(.)←∞
12: f(.)←∞
13: openList← {startState}
14: closeList← ∅
15: while openList not empty do
16: state← openList.pop()
17: closeList.insert(state)
18: if state is goalState then
19: break
20: EXPAND(state)

Because both changed functions still take constant time,
the overall time complexity of the deformed A* planner
remains the same as the original A* planner.

IV. DISCUSSION

A. Constraints on motion primitives

If given a designed set of motion primitives in the regular
space, equation (5) can help check the feasibility of the
corresponding motion primitives in the deformed space. But
for nonlinear deformation function f , this equation can rule
out a lot of motion primitives and thus reduces the graph’s
connectivity so that no feasible path might exist from start
to goal, as shown in Figure 4.

In our practice of mobile robotics, mapped motion prim-
itives that do not satisfy differential constraints, in other
words motion primitives that do not satisfy Equation (5)
can actually also be closely followed if feedback control is
applied to make the robot follow the path if the violation

6309

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

is modest. Take differential drive car for example, if the
mapped motion primitives have very little lateral velocity,
then practically, this motion primitive can be executed with
good accuracy with a line of sight controller [11].

Thus, changing nonholonomic constraints of the system
to soft constraints can on one hand enrich the connectivity
of the graph and make the robot move smoother because of
more choice of motion primitives, and on the other hand,
make the planner choose the optimal path with lowest cost
by taking constraints into consideration.

Taking differential drive car for example, by setting matrix
M as

M =

cx 0 0
0 cy 0
0 0 cθ

 , (12)

where cy is the cost or penalty for lateral velocity. Instead
of setting it ∞, which is rigid constraint, we can set it to be
a finite number. This will incorporate the system constraints
as soft ones into the planning process.

B. Heuristic design

As mentioned in previous section, one naive way to get
heuristic in deformed space is, given a state and a goal state
in regular space, computing the mapped states in deformed
space and then using the Euclidean distance between these
two mapped states as the heuristic, as shown in equation (8).
It is an underestimate of the true distance and thus guarantee
the optimality of the planned path in deformed space, but the
guiding power of such heuristic is reduced because of the
relatively large difference between heuristic and true distance
and this difference depends on the underlying manifold.

To achieve good guiding power on deformed space, a good
heuristic is the length of the geodesic curve τG

′ on the
parametrized surface between the given point p′ and goal
point p′goal, which exists if, by Hopf-Rinow theorem [9],
the parametrized surface is complete and locally compact.
Here point p is the translational part of the pose in SE(3).
The geodesic curve is an underestimate of the optimal path
and thus guarantee the optimality of the planner. But this
geodesic curve can be hard to compute given p and pgoal.

One alternative heuristic is the length of the image curve
τL
′(t) of the straight line connecting p and pgoal in regular

space τL(t). We use the integration of curvature along τL
′

to measure how far τL′ deviates from being a geodesic τG′,
which has zero curvature. The formula is

ε =

∫ T

0

|κ(τL
′(t))|dt.

Such curve τL′ is an approximation of the optimal path in
deformed space. It can overestimate the optimal cost and thus
lead to sub-optimal solution. To limit the sub-optimality, we
can use ε to check if τL′ is far away from geodesic. If ε
exceed some thresholds, this heuristic should be rejected or
discounted. To compute this heuristic, we first characterize
the straight line in regular space as a parameterized curve
τL(t) = (xL(t), yL(t), zL(t)), t ∈ [0, T] and τL(0) =

(xL(0), yL(0), zL(0)) = (xstate, ystate, zstate), τL(T) =
(xL(T), yL(T), zL(T)) = (xgoal, ygoal, zgoal). We can map
each point along the curve from regular space to deformed
space via f . Thus the length of the curve τL′(t) in deformed
space can be computed as

l(τL
′(t)) =

∫ T

0

√
ẋ′(t)2 + ẏ′(t)2 + ż′(t)2dt (13)

and l(τL
′(t)) can be approximated by discretizating the

integral

l(τL
′(t)) ≈ ΣNi=0

T

N

√
ẋ′2i + ẏ′2i + ż′2i . (14)

where N can be chosen as a constant. This heuristic can better
approximate the true distance than the previous heuristic, as
shown in Figure 3, which visualize the heuristic value as the
length of the curve between two states.

Fig. 3: Example of deformed heuristic. The green curves
show the path with shortest cost between the given state and
goal state planned with motion primitive sets illustrated on
the Figure 4b. The magenta curves are the straight connecting
line in regular space and its image in deformed space. The
cyan straight line on the right side is the straight connecting
line in deformed space.

V. RESULTS

To evaluate the performance of DSLP framework, we
compare it with A* on a regular state-lattice. Then we also
implemented our framework on a real mobile robot and make
it move on an elliptical corridor.

A. Comparison with regular state lattice planning

To numerically show the benefit of explicitly exploiting the
form-fitting underlying structure of the environment, we do
a comparison with normal search-based planning, where the
planner used is A* planner. The environment we want to plan
paths in is a semicircular plane with inner radius of 1.5m,
outer radius of 2.5m. We choose resolution of 0.05m per grid
for the traditional state-lattice planner. As shown in Figure
5, to cover the plane, with DSLP, we need a state lattice of
size X = 20, Y = 81,Θ = 16, where X is the width, Y is
the height and Θ is the number of discretized angles. For the

6310

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 4: Examples from two sets of motion primitives.
(a)Motion primitives from the first set while (b)Motion
primitives from second set. The numbers in the figure show
the ending orientations of motion primitives, which range
from 0 to 15 representing discrete angles from 0 to 2π. Both
sets has turn in place motions which are omitted in the figure.

Fig. 5: Comparison with motion primitive set shown in
Figure 4a. Only x, y are illustrated here, θ is omitted. The
green part shows the states with at least one orientation
explored before finding the cheapest path to goal (states
searched: left 14718, right 14937). The start pose lies at
the lower side of the graph while the goal pose lies at the
upper side of the graph. Left figure shows the regular grids,
middle one shows the deformed space and the right one
shows the normal state lattice planning, where the light blue
are obstacles and deep blue shows free space.

traditional planner, the size of the regular state lattice to cover
the plane is at least X = 50, Y = 100,Θ = 16, roughly three
times as large as the previous one. If the environment gets
larger, the deformation strategy will save more memory.

We have done the test with two sets of motion primitives,
as shown in Figure 4. In the first set, we have only forward,
turn in place and 90 degree arc motions and test results are
shown in Figure 5, while in the second set, we have 12
different motions for each orientation and test results are
shown in Figure 6.

As shown in the tests, another advantage of DSLP is, the
output planned path is generally globally smoother, while
the local smoothness is related with motion primitives. From
regular state lattice to deformed state lattice, a straight line
will be mapped to a curve.

Besides, as shown in Figure 7, we run planners in a narrow

Fig. 6: Comparison with motion primitive set shown in figure
4b. Only x, y dimensions are illustrated here, θ is omitted.
The green part shows the states with at least one orientation
explored before finding the cheapest path to goal (states
searched: left 11745, right 14014). The start pose lies at
the lower side of the graph while the goal pose lies at the
upper side of the graph. Left figure shows the regular grids,
middle one shows the deformed space and the right one
shows the normal state lattice planning, where the light blue
are obstacles and deep blue shows free space.

Fig. 7: Comparison between DSLP and normal state lattice
planning in a narrow corridor. Taking robot size into consid-
eration, DSLP find a solution while normal state lattice fails
unless further increase the resolution of the state lattice.

6311

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

curved corridor which is almost as wide as the robot size.
The normal state lattice planner fails to find a solution unless
the resolution of the state lattice increase, while DSLP find a
solution after mapping straight motion primitives to curved
ones.

B. Real robot implementation on an elliptical helix

To test our DSLP framework, we have also done a test on
an elliptical helix narrow corridor in Gates Hillman Center
in Carnegie Mellon University.

We use the same definition of deformation parameters
rc, βc as the circular sector example and add a few more
parameters, N , the number of complete layers of helix,
zs, ze the starting and ending height of the helix. The angle
resolution γ needed to be updated with

βs2 = βs, βe2 = βe + 2Nπ, βc =
βs2 + βe2

2

γ =
βe2 − βs2
H − 1

. (15)

And we define phase ϕ of state lattice as ϕ = βc+γ(y−yc).
Then, the nonlinear map f : (x, y, θ) 7→ (x′, y′, z′, θ′) can
be formulated as

x′ = (rc + x− xc)cos(βc + (y − yc)γ)

y′ = (rc + x− xc)sin(βc + (y − yc)γ)

z′ =
ϕ− βs2
βe2 − βs2

(z2 − z1) + z1

θ′ = θ + βc + (y − yc)γ (16)

And we can therefore compute the differential of f , df |g

df |x =


cos(βy) −rx sin(βy) 0
sin(βy) rx cos(βy) 0

0 z2−z1
H 0

0 γ 1

 (17)

βy = βc + (y − yc)γ, rx = γ(rc + x− xc)

The cost can also be deformed with matrix M as

M =


cx 0 0 0
0 cy 0 0
0 0 0 0
0 0 0 cθ

 . (18)

The third column is all zero because the robot has no
z component active body velocity and the z velocity in
deformed space is enforced by the underlying manifold.

For the experiment, we first measured the size of the
corridor by getting a point cloud with Velondyne LiDAR.
With this point cloud, we estimated the major and minor axis
of the ellipse by projecting elliptical helix onto horizontal
plane. Then we tuned the parameters of the deformation
function to make our deformed state lattice match the real
corridor. Then we run the planner and executed the planned
path on the corridor.

Because the deformed state lattice can not perfectly match
the helix corridor and the initial pose where we start the
robot is not exactly aligned with the start pose on state-
lattice, especially the initial orientation will affect the whole

trajectory drastically. To avoid collision with the wall, we
employ a simple feedback controller based on a 2D Hokuyo
laser, which can be used to measure the relative distance and
orientation to the wall.

The experiment validates the correctness and efficiency of
the DSLP and gives an illustrative example about how DSLP
might be used for mobile robot planning in real world.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a planning framework called
DSLP. By finding a nonlinear map that captures the proper
low dimensional form-fitting of the environment, we can
map state lattices, motion primitives and heuristics between
regular space and deformed space. Based on this, we can
easily adapt any state-of-the-art search-based planner to a
corresponding DSLP planner with same time complexity by
only changing getting cost and getting heuristic parts with
the corresponding DSLP ones. Within this framework, we
also dicuss how to address the case when the deformed state
lattice loses lots of connectivity and how to design heueristic
in deformed space. Based on DSLP framework, the planning
process is facilitated, the planned path is globally smoother
and less memory is required to save state lattice.

In the future, possible research directions are how to
automatically identify the underlying form-fitting manifold
from a map of the real environment, like a point cloud. This
will make the DSLP framework more applicable to various
types of environment.

REFERENCES

[1] Pivtoraiko, Mihail, and Alonzo Kelly. ”Generating near minimal
spanning control sets for constrained motion planning in discrete
state spaces.” 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2005.

[2] Pivtoraiko Mihail, A. Knepper Ross and Alonzo Kelly, ”Differentially
constrained mobile robot motion planning in state lattices”, Journal of
Field Robotics, vol. 26, no. 3, pp. 308-333, 2009.

[3] Rayner, D. Chris, Michael H. Bowling, and Nathan R. Sturtevant.
”Euclidean Heuristic Optimization.” In AAAI. 2011.

[4] Gochev, Kalin, Benjamin Cohen, Jonathan Butzke, Alla Safonova, and
Maxim Likhachev. ”Path planning with adaptive dimensionality.” In
Fourth annual symposium on combinatorial search. 2011.

[5] Chen, Wenlin, Yixin Chen, Kilian Q. Weinberger, Qiang Lu, and
Xiaoping Chen. ”Goal-Oriented Euclidean Heuristics with Manifold
Learning.” In AAAI. 2013.

[6] Likhachev, Maxim, Geoffrey J. Gordon, and Sebastian Thrun. ”ARA*:
Anytime A* with provable bounds on sub-optimality.” In Advances in
Neural Information Processing Systems, p. None. 2003.

[7] Stentz, Anthony. ”Optimal and efficient path planning for partially-
known environments.” In Robotics and Automation, 1994. Proceed-
ings., 1994 IEEE International Conference on, pp. 3310-3317. IEEE,
1994.

[8] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. ”A formal
basis for the heuristic determination of minimum cost paths.” IEEE
transactions on Systems Science and Cybernetics 4, no. 2 (1968): 100-
107.

[9] Hopf, Heinz, and Willi Rinow. ”ber den Begriff der vollstndigen
differentialgeometrischen Flche.” Commentarii Mathematici Helvetici
3, no. 1 (1931): 209-225.

[10] Ferguson, Dave, and Anthony Stentz. ”Anytime, dynamic planning in
high-dimensional search spaces.” Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, 2007.

[11] Lim, K. B., and G. J. Balas. ”Line-of-sight control of the CSI
evolutionary model: control.” American Control Conference, 1992.
IEEE, 1992.

6312

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 01:03:42 UTC from IEEE Xplore. Restrictions apply.

