
Multi-objective Conflict-based Search Using Safe-interval Path Planning

Zhongqiang Ren1, Sivakumar Rathinam2 and Howie Choset1

Abstract— This paper addresses a generalization of the
well known multi-agent path finding (MAPF) problem that
optimizes multiple conflicting objectives simultaneously such
as travel time and path risk. This generalization, referred
to as multi-objective MAPF (MOMAPF), arises in several
applications ranging from hazardous material transportation
to construction site planning. In this paper, we present a new
multi-objective conflict-based search (MO-CBS) approach that
relies on a novel multi-objective safe interval path planning
(MO-SIPP) algorithm for its low-level search. We first develop
the MO-SIPP algorithm, show its properties and then embed
it in MO-CBS. We present extensive numerical results to show
that (1) there is an order of magnitude improvement in the
average low level search time, and (2) a significant improvement
in the success rates of finding the Pareto-optimal front can be
obtained using the proposed approach in comparison with the
state of the art. Finally, we also provide a case study to demon-
strate the potential application of the proposed algorithms for
construction site planning.

I. INTRODUCTION

Multi-agent path finding (MAPF), as its name suggests,
computes an ensemble of collision-free paths for multiple
agents between their respective start and goal locations. Con-
ventional MAPF problems [36] typically consider optimizing
a single path criterion such as path length or travel time.
However, in many real-world planning applications [7], [11],
[22], [42], multiple conflicting objectives such as path length,
travel risk and other domain-specific metrics are simultane-
ously optimized. When multiple objectives cannot be readily
converted into a single weighted objective, multi-objective
planners [5] that aim to find a set of Pareto-optimal solutions
are required. A solution is Pareto-optimal if there exists no
other solution that will yield an improvement in one objective
without causing a deterioration in at least one of the other
objectives. Finding a Pareto-optimal set for multi-objective
MAPF (MOMAPF) problems while ensuring conflict-free
paths for agents in each solution is quite challenging as the
size of the Pareto-optimal set may grow exponentially with
respect to the number of agents as well as the dimension of
the search space [32], [45]. In this article, we propose a new
multi-objective conflict-based search (MO-CBS) approach to
find the Pareto-optimal set for MOMAPF.

Conflict-based search (CBS) [33] poses MAPF as a graph
search problem and computes an optimal solution for agents
with respect to a single objective. CBS is a two-level
search algorithm where on the high level, collisions between
agents are detected and constraints are generated from these

1 Zhongqiang Ren and Howie Choset are with Carnegie Mellon Univer-
sity, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.

2Sivakumar Rathinam is with Texas A&M University, College Station,
TX 77843-3123.

collisions and added to the low level search. On the low level,
a single-agent planner, such as A*, is invoked to plan paths in
a time-augmented graph to satisfy all the added constraints.
Leveraging both CBS and multi-objective dominance [5],
multi-objective CBS (MO-CBS) has been proposed in our
prior work [29] to compute a Pareto-optimal set of solutions
for MOMAPF. MO-CBS employs a similar two-level search
workflow, where on the low level, an A*-like multi-objective
path planner, such as NAMOA* [20], is used to search over a
time-augmented graph to compute Pareto-optimal individual
paths for an agent subject to constraints.

We learnt from our prior work [29] that using NAMOA*
for the low level search over a time-augmented graph is
inefficient: First, optimal search over time augmented graphs
are time consuming because of the inclusion of the time
dimension [26]; Second, the number of Pareto-optimal paths
in a time-augmented graph can grow exponentially with
respect to the number of nodes to be searched [10]. Since
the low level search is repeatedly invoked in any CBS-based
methods, using an inefficient algorithm at the low level can
significantly burden a CBS-based algorithm, which includes
MO-CBS. This work aims to address this issue by developing
a new low level search algorithm called multi-objective safe-
interval path planning (MO-SIPP).

The proposed MO-SIPP leverages SIPP [26] to search the
time dimension efficiently while optimizing multiple objec-
tives. We first show that the MO-SIPP is able to compute
all Pareto-optimal solutions for a single agent. Then, we
employ MO-SIPP as the low level planner for MO-CBS and
verify our idea using an MAPF benchmark set [36]. From
our numerical results obtained using the proposed approach
for instances up to 3 objectives, we observed (1) an order
of magnitude improvement in the average low level search
time, and (2) around 20% improvement in the success rates of
finding Pareto-optimal solutions within a fixed time limit in
some of the maps. Finally, we provide a construction site case
study to demonstrate the potential usage of the algorithm.

The rest of the article discusses the related work in Sec. II.
A review of SIPP and the proposed MO-SIPP are presented
in Sec. III. MO-CBS and its improved version via MO-SIPP
is discussed in Sec. IV with numerical results in Sec. V.
Finally, we conclude and outline the future work in Sec. VI.

II. RELATED WORK

A. Multi-objective Path Planning

Existing approaches for single-agent, multi-objective path
planning (MOPP) problems compute an exact or approxi-
mated set of Pareto-optimal paths for the agent between its
start and goal locations with respect to multiple objectives.

ar
X

iv
:s

ub
m

it/
39

19
70

2 
 [

cs
.R

O
] 

 8
 S

ep
 2

02
1



The applications of MOPP can be found in construction
site routing [34], hazardous material transportation [7], and
others [22], [42]. One common approach to solve a MOPP
is to weight the multiple objectives and transform it to a
single-objective problem [5], [6]. The transformed problem
can then be solved using any single-objective algorithm. This
approach, however, requires in-depth domain knowledge to
design the weighting procedure; it may also requires one
to repeatedly solve the transformed single-objective problem
for different sets of weights in order to capture the Pareto-
optimal set which is quite challenging [21].

Additionally, MOPP has been solved directly via graph
search techniques [20], [37], [39] and evolutionary algo-
rithms [41] where a Pareto-optimal set of solutions is
computed exactly or approximated. These graph-based ap-
proaches provide guarantees about finding all Pareto-optimal
solutions but can run slow for hard cases, where the number
of Pareto-optimal solutions is large. MO-CBS belongs to
this category of search techniques that directly computes a
Pareto-optimal set with quality guarantees.

B. Multi-agent Path Finding

Various methods have been developed to compute an
optimal solution for multi-agent path finding (MAPF) prob-
lems including A*-based approaches [8], [35], subdimen-
sional expansion [40], compilation-based solver [38], integer
programming-based methods [13] and conflict-based search
(CBS) [33]. In addition, different variants of MAPF have
also been considered, such as agents moving with differ-
ent speeds [1], [27], agents moving with stochastic travel
times [24], visiting multiple goals along the path [12], [28],
pickup-and-delivery tasks [17], [18], satisfying kinodynamic
constraints [4] to name a few. However, all these methods
optimize a single objective defined over paths.

For multi-objective MAPF (MOMAPF), evolutionary al-
gorithms [41] have been leveraged to solve a variant of
MOMAPF where agents are not allowed to wait in place and
collisions between the agent’s paths are modeled in one of
the objectives and not as a constraint. Recently, by leveraging
M* [40] and CBS [33] respectively, MOM* [30] and MO-
CBS [29] have been proposed to solve the MOMAPF. As we
mentioned earlier, in this paper, we propose a new low level
search algorithm called MO-SIPP and embed it in MO-CBS.
This new approach outperforms the standard MO-CBS in all
cases in terms of success rates in finding the Pareto-optimal
set within a fixed time limit.

C. Safe Interval Path Planning

Safe interval path planning (SIPP) [26] was originally
developed to compute a single-agent collision-free trajectory
from a start to a goal location while minimizing the arrival
time, in an environment with dynamic obstacles moving
along known trajectories. SIPP, as a fast variant of A*, uses
safe-intervals rather than time steps to represent the time
dimension. This approach significantly reduces the size of
the search space, and thus improves search efficiency (in

comparison to applying A* over the entire time-augmented
graph).

SIPP has been extended in several directions in the liter-
ature. To name a few, sub-optimal SIPP [25], [44] trades
off between search efficiency and solution quality. Any-
time SIPP [23] begins by computing a sub-optimal feasible
solution quickly at first and then improves the solution
quality until the allocated planning time runs out. GSIPP [9]
generalizes SIPP to minimize an objective other than arrival
time. SIPP has also been used for pickup and delivery
problems [17] and any-angle path finding [43], etc. With
respect to incorporating SIPP into CBS, recent work in
[1] proposes a new method called Continuous-time CBS
which aims to handle agents moving at different speeds.
ECBS-CT [4] extends SIPP and CBS to solve a multi-agent
motion planning problem which computes kinodynamically
feasible paths for agents. No existing work we are aware
of has leveraged SIPP to minimize multiple objectives. The
proposed multi-objective SIPP (MO-SIPP) in this work takes
a first step to fill this gap. Leveraging the proposed MO-SIPP,
we then achieve an order of magnitude speed up in the low
level search of MO-CBS.

III. MULTI-OBJECTIVE SAFE-INTERVAL PATH PLANNING

A. Preliminaries

We begin with a description about the problem solved
by safe-interval path planning (SIPP) and then provide a
summary of SIPP. Given a graph G = (V,E), let Gt =
(V t, Et) = G × {0, 1, . . . , T} denote a time-augmented
graph of G, where each vertex v ∈ V t is defined as
v = (u, t), u ∈ V, t ∈ {0, 1, . . . , T} and T is a pre-defined
time horizon, which is typically a large positive integer.
Edges within Gt is represented as Et = V t × V t where
(u1, t1), (u2, t2) is connected in Gt if (u1, u2) ∈ E and
t2 = t1 + 1. Wait in place is also allowed in Gt which
means (u, t), (u, t+1), u ∈ V is connected in Gt. A dynamic
obstacle with a known trajectory is represented as a set of
subsequently occupied nodes in Gt. An illustrative example
of G, Gt and dynamic obstacles can be found in Fig. 1. For
the rest of the article, when a node or edge is mentioned,
we point out to which graph (G or Gt) it belongs if needed.
Given an initial node vinit and goal node vgoal in G, SIPP
aims to plan a collision-free trajectory τ from vinit at time
zero to vgoal with the minimum arrival time.

To solve the problem, A* can be applied to search over
Gt to find a collision-free trajectory with the minimum
arrival time. However, this approach is very inefficient as
the time dimension is searched in a step-by-step manner. To
overcome this challenge, SIPP [26] compresses time steps
into intervals. Let tuple s = (v, [ta, tb]) denote a search state
at node v ∈ G where ta, tb are the beginning and ending time
steps of a safe (time) interval respectively. A safe interval is
a maximal contiguous time range in which a node is not
occupied by any dynamic obstacles. State s = (v, [ta, tb])
indicates that node v is not occupied by any dynamic obstacle
and hence the name safe interval for [ta, tb]. Note that, any
two safe intervals at the same node never intersect. Two



states are the same, if both states share the same node,
beginning time step and ending time step. Otherwise, two
states are different. Especially, two states with the same node
but different safe intervals are different states.

Fig. 1: A toy example of SIPP over a graph G with 6 (free)
nodes. The time-augmented graph Gt is visualized with time
steps between 0 and 4 with edges connecting different time
steps omited to make the plot clear. A dynamic obstacle
enters the environment at node b at time 2, moves to node e
at time 3 and stays there afterwards. At node b, there are two
possible states (b, [0, 1]) and (b, [3,∞]) while at node e, there
is only one possible state (e, [0, 2]). The agent’s initial state
is (a, [0,∞]). To expand it, one successor is generated at
node d, which is the state (d, [0,∞]) with the earliest arrival
time 1, and two successors are generated at node b, which
are (b, [0, 1]) with the earliest arrival time 1 and (b, [3,∞])
with the earliest arrival time 3.

SIPP conducts A*-like heuristic search. For each state s,
let g(s) represent the earliest arrival time at state s at any
time of the search and let h(s) denote the heuristic value of
s, which underestimates the cost-to-goal, i.e. travel time to
goal, from s. In addition, the f -value of a state is f(s) :=
g(s) +h(s). At any time of the search, let OPEN denote the
open list containing candidate states to be expanded, where
candidate states are prioritized by their f -values.

SIPP starts by inserting the initial state so into OPEN (so
is a tuple of vinit and the safe interval with a beginning time
set to 0). In each search iteration, a state with the minimum
f -value in OPEN is popped from OPEN and expanded. To
expand a state s = (v, [ta, tb]), SIPP considers all reachable
successor states from s and finds the earliest possible arrival
time onto each of those states via “wait and move” action,
i.e. wait for an minimum amount of time to arrive at the
successor state as early as possible. An illustration of this
expansion process can be found in Fig. 1. During the search,
SIPP records the so-far earliest arrival time at each state s as
g(s). When a new trajectory is found to reach state s (from
vinit) with an earlier arrival time, g(s) is updated. Here, a
trajectory from vinit to some state s = (v, [ta, tb]) indicates a
trajectory from vinit to v with an arrival time at v within safe
interval [ta, tb]. When a state at the goal node (i.e. the node
contained in the state is vgoal) is expanded, a trajectory with
the minimum arrival time is found and SIPP terminates. The
key principle behind SIPP can be summarized as follows.

Theorem 1: Arriving at a state s at the earliest possible
time can (1) generate the maximum number of successors
from s and (2) find the optimal (i.e. minimum arrival time)
trajectory from vinit to s during the search.

We note here that when we introduce SIPP to multi-
objective settings in the subsequent sections, this principle

needs to be carefully revisited.

B. Multi-objective Problem Formulation

This section follows the notations and concepts introduced
in the previous section. For a multi-objective trajectory
planning problem, let ~c(e),∀e ∈ Et denote a non-negative
cost vector associated with edge e. Note that, Et includes the
wait action. Let ~g(τ) denote the accumulated cost vector of a
trajectory τ , which is the sum of the cost vector of all edges
present in τ . To compare any two trajectories, we compare
the cost vectors between them. Given two vectors a and b,
a dominates b if every component in a is no larger than the
corresponding component in b and there exists at least one
component in a that is strictly less than the corresponding
component in b. Formally, it is defined as follows.

Definition 1 (Dominance [5]): Given two M -
dimensional vectors a and b, a dominates b, notationally
a � b, if ∀m ∈ {1, 2, . . . ,M}, a(m) ≤ b(m), and there
exists m ∈ {1, 2, . . . ,M} such that a(m) < b(m).
If a does not dominate b, we represent this non-dominance
as a � b. Any two trajectories connecting the same pair of
nodes are non-dominated to each other if the corresponding
cost vectors do not dominate each other. The goal of the
multi-objective trajectory planning problem is to find T ∗, a
set of all collision-free, non-dominated (i.e. Pareto-optimal)
trajectories with unique cost vectors.1

C. Algorithm

As in SIPP, let a search state s = (v, [ta, tb]) be a tuple
of a node and a safe interval. In SIPP, for each closed
state s, keeping track of just one trajectory from the start
to s with minimum arrival time is sufficient to compute
an optimal solution to the goal vertex. In a multi-objective
problem, however, there can be multiple trajectories with
non-dominated cost vectors connecting vinit and state s and
all of them need to be recorded at s in order to compute a
set of cost-unique Pareto-optimal trajectories T ∗ to the goal
vertex. The algorithm also needs to be able to discriminate
between those trajectories that arrive at the same state s with
possibly different cost vectors and arrival times. Based on
this observation, let l = (s,~g, tr) denote a label at state s,
which identifies a specific trajectory from vinit to s with
an arrival time tr and a cost vector ~g. Additionally, let ~g(l),
tr(l) and s(l) represent the cost vector, arrival time and state
associated with label l respectively. Also, let v(l), ta(l) and
tb(l) denote the node (in G), beginning time and ending time
of the safe interval of state s(l) respectively.

As shown in Algorithm 1, multi-objective safe-interval
path planning (MO-SIPP) in general has a similar workflow
as SIPP (and A*). The key differences are presented below.

1) Vector valued cost vectors: Scalar values g, h, f are
replaced with corresponding cost vectors in MO-SIPP. To
make the notation clear, we use ~g,~h, ~f to denote the cost
vectors in MO-SIPP. Specifically, ~g is associated with labels
and it describes the cost-to-come from vinit. ~h is defined over
states and ~h(s) represents a component-wise underestimate

1If two trajectories have the same cost vectors, only one of them is kept.



Algorithm 1 Pseudocode for MO-SIPP

1: lo ← (so,~0, 0)
2: add lo into OPEN
3: α(s)← ∅, ∀s
4: add lo into α(so)
5: T ← ∅
6: while OPEN not empty do . main search loop
7: l← OPEN.pop()
8: if v(l) is the goal node then
9: τ ←Reconstruct(l)

10: add τ into T
11: FilterOpen(l)
12: continue
13: Lsucc ← GetSuccessors(l)
14: for all l′ ∈ Lsucc do
15: if LabelDominated(l′) then
16: continue
17: f(l′)← g(l′) + h(s(l′))
18: parent(l′) ← l
19: add l′ into OPEN
20: return T

of the cost vector of all non-dominated paths from state s to
the goal node. Finally, ~f is defined over labels and ~f(l) :=
~g(l) + ~h(s(l)), which underestimates the cost vector of all
trajectories connecting the start and the goal via label l.

2) Label expansion: OPEN contains all candidate labels
for further expansion. In every search iteration, a label
with a non-dominated cost vector within OPEN is selected
for further expansion. The expansion step is similar to the
expansion in SIPP with the only difference that MO-SIPP
expands and generates new labels (rather than states as in
SIPP). Specifically, to expand a label l, MO-SIPP considers
all the reachable states from state s(l), and then for each
reachable state s′, the earliest arrival time t′r and the cost
vector ~g′ for reaching s′ from s(l) is computed. A successor
label l′ = (s′, ~g′, t′r) is then generated. After expanding a
label l, a set of successor labels are obtained for comparison.

3) Label comparison: The comparison step in MO-SIPP
differs from the one in SIPP. In SIPP, when a new trajectory
from vinit to state s is found, the g-value of this new
trajectory and the previously stored g-value at s is compared
and the smaller value is kept. In MO-SIPP, multiple non-
dominated trajectories, which are represented by labels, need
to be tracked at state s. To do so, first, a new type of
dominance between labels is defined as follows.

Definition 2 (Label-dominance): Given two labels l =
(s,~g, tr) and l′ = (s′, ~g′, t′r) with s = s′ (i.e. nodes and
safe intervals in both s and s′ are the same), if the following
two conditions both hold: (i) ~g � ~g′ or ~g = ~g′, (ii) tr ≤ t′r,
then we say l label-dominates l′. Notationally, l �l l

′.
Subscript l in �l indicates that it’s a comparison between
labels rather than cost vectors. Second, let α(s) denote a set
of non-dominated labels at state s. To initialize, α(s) for all
states but the initial state are set to an empty set and α(so) is
set to be a set containing (so,~0, 0) only. With that in hand,
we now introduce the comparison procedure, as shown in
Algorithm. 2. When a new label l′ is generated at state s (i.e.
s(l′) = s), it is compared with every label l ∈ α(s). If none

Algorithm 2 Pseudocode for LabelDominated(l′)

1: l′ is the input label to be compared.
2: for all l ∈ α(s(l′)) do
3: if l �l l

′ then
4: return true . should be discarded
5: for all l ∈ α(s(l′)) do
6: if l′ �l l then
7: remove l from α(s(l′))
8: remove l from OPEN if OPEN contains l.
9: add l′ to α(s(l′))

10: return false . should not be discarded

of the labels in α(s) label-dominates l′, then l′ is inserted into
α(s) and l′ is used to filter α(s), which removes all labels
l ∈ α(s) that are label-dominated by l′. By doing so, at any
time of the search, α(s) maintains a set of labels at state s
with either a non-dominated cost vector or an earlier arrival
time. Finally, if a generated label is not label-dominated, it
is inserted into OPEN for further expansion.

4) Filtering and termination: During the search, when a
label l with v(l) being the goal node is popped from OPEN,
a Pareto-optimal trajectory is found and is inserted into T ,
which is a set that contains all Pareto-optimal trajectories
found during the search. The trajectory represented by a label
can be easily reconstructed by iteratively backtracking the
parent pointers of labels. Different from SIPP, what’s new in
MO-SIPP is that the cost vector ~g(l) is used to filter OPEN,
which removes all candidate labels l′ in OPEN if ~g(l) � ~g(l′)
or ~g(l) = ~g(l′). The intuition behind this filtering is that, any
filtered candidate labels can not be part of a Pareto-optimal
trajectory and is thus discarded, as the cost vectors of all
edges in Gt are non-negative. MO-SIPP terminates when
OPEN is empty, which guarantees that T contains all cost-
unique Pareto-optimal trajectories.

D. Analysis

In this section, we show that MO-SIPP is able to compute
a set of cost-unique Pareto-optimal trajectories T ∗.

Lemma 1: Arriving at a state s at the earliest possible time
can generate the maximum number of successors.

Proof: Note that the set of reachable successors from
a label corresponding to a state depends only on the arrival
time of the label and is not dependent on the cost vector
of the label. Therefore, given two labels l = (s,~g, tr) and
l′ = (s,~g′, t′r) at the same state s = (v, [ta, tb]) with tr ≤ t′r,
any reachable state from l′ (within time interval [t′r, tb]) is
also reachable from l (within time interval [tr, tb]), regardless
of the cost vectors ~g or ~g′. Hence proved.

The second property of SIPP in Theorem 1 does not apply
to MO-SIPP because SIPP aims to optimize the arrival time
corresponding to a single objective while MO-SIPP aims
to find non-dominated trajectories corresponding to multiple
objectives. With the modified label comparison procedure in
MO-SIPP, the following lemma holds.

Lemma 2: At any time of the search, if a label at state s
is pruned, the trajectory represented by the label cannot be
part of a cost-unique Pareto-optimal trajectory.



Proof: In MO-SIPP, there are three cases where a label
l′ is pruned:
• l′ is filtered by the FilterOpen procedure;
• l′ is label-dominated by an existing label l ∈ α(s(l′))

(line 3 in Algorithm 2);
• l′ is label-dominated by a label l that enters α(s(l′))

(line 6 in Algorithm 2).
For either of those three cases, ~g(l′) is dominated by or equal
to the cost vector of some other labels expanded or to be
expanded. In addition, if a label l′ is label-dominated by l,
any possible successors of l′ is also reachable from l since
tr(l) ≤ tr(l′). Therefore, l′ cannot be part of a cost-unique
Pareto-optimal trajectory.

Therefore, in MO-SIPP, label expansion always generates
successors with the earliest arrival time which guarantees
the maximum number of successors (Lemma 1). Those
generated successor labels are only pruned if they cannot
lead to a cost-unique Pareto-optimal trajectory (Lemma 2).
MO-SIPP terminates when OPEN is empty, which means all
labels are expanded or pruned, which computes a T ∗. This
property can be summarized with the following theorem:

Theorem 2: MO-SIPP algorithm is able to compute all
cost-unique Pareto-optimal trajectories connecting the start
and the goal.

IV. MULTI-OBJECTIVE CONFLICT-BASED SEARCH

In this section, we first review the definition of multi-
objective multi-agent path finding (MOMAPF) problem and
then present how to embed MO-SIPP as the low level planner
in MO-CBS.

A. MOMAPF Problem Description

Let index set I = {1, 2, . . . , N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V,E), where the vertex set V represents all possible
locations of agents and the edge set E = V ×V denotes the
set of all the possible actions that can move an agent between
any two vertices in V . An edge between two vertices u, v ∈
V is denoted as (u, v) ∈ E and the cost of an edge e ∈ E is
a M -dimensional non-negative vector cost(e) ∈ (R+)M\{0}
with M being a positive integer.

Here, we use a superscript i ∈ I over a variable to
represent the specific agent that the variable belongs to
(e.g. vi ∈ V means a vertex with respect to agent i).
Let πi(vi1, v

i
`) be a path that connects vertices vi1 and vi`

via a sequence of vertices (vi1, v
i
2, . . . , v

i
`) in the graph G.

Let gi(πi(vi1, v
i
`)) denote the M -dimensional cost vector

associated with the path, which is the sum of the cost vectors
of all the edges present in the path, i.e., gi(πi(vi1, v

i
`)) =

Σj=1,2,...,`−1cost(vij , v
i
j+1).

All agents share a global clock and all the agents start
their paths at time t = 0. Each action, either wait or move,
for any agent requires one unit of time. Any two agents
i, j ∈ I are said to be in conflict if one of the following two
cases happens. The first case is a “vertex conflict” where
two agents occupy the same location at the same time. The

second case is an “edge conflict” (also known as “swap
conflict” in the literature) where two agents move through
the same edge from opposite directions at times t and t+ 1
for some t.

Let vio, v
i
f ∈ V respectively denote the initial location

and the destination of agent i. Without loss of generality, to
simplify the notations, we also refer to a path πi(vio, v

i
f ) for

agent i between its initial location and destination as simply
πi. Let π = (π1, π2, . . . , πN ) represent a joint path for all
the agents. The cost vector of this joint path is defined as the
vector sum of the individual path costs over all the agents,
i.e., g(π) = Σig

i(πi).
To compare any two joint paths, we compare the cost

vectors corresponding to them using the dominance defined
in Def. 1. Any two joint paths are non-dominated if the
corresponding cost vectors do not dominate each other. The
set of all non-dominated conflict-free joint paths is called
the Pareto-optimal set. This work aims to find any maximal
subset of the Pareto-optimal set, where any two joint paths
in this subset do not have the same cost vector.

B. A Brief Review of MO-CBS

Multi-objective conflict-based search (MO-CBS) is a two-
level search algorithm that begins by computing a set of
all cost-unique individual Pareto-optimal paths Πi

o,∀i ∈
I for each agent independently via a single-agent multi-
objective path planner, such as NAMOA* [20]. By taking
the combination Πo = Π1

o × Π2
o × · · · × ΠN

o , an initial set
of joint paths is generated. For each joint path πo ∈ Πo, a
corresponding high-level search root node, which contains
πo, the cost vector of πo and an empty constraint set, is
generated and inserted into OPEN. In MO-CBS, OPEN is a
list containing all candidate high-level nodes.

In each high-level search iteration, a candidate node P
with a non-dominated cost vector within OPEN is popped
and checked for conflict along every pair of individual
paths. For the first detected conflict between some pair of
agents i, j, MO-CBS splits the conflict and generates two
constraints, where one constraint is imposed on agent i
while the other constraint is added to agent j. Next, for
both constraints, a low level search, which is a single-agent
multi-objective planner, is invoked to compute the individual
Pareto-optimal paths Πi for agent i (and j) while satisfying
all the constraints added for agent i (this can be found by
iterative backtracking the constraints of all ancestor high-
level nodes). For each πi ∈ Πi, a corresponding high-level
node P ′ is generated from P and is inserted into OPEN,
where the joint path in P ′ is copied from P with agent i’s
individual path replaced with πi.

During the high-level search of MO-CBS, if a conflict-
free joint path π is found, MO-CBS uses the cost vector
of π to filter candidates nodes in OPEN, which removes
high-level nodes with dominated cost vectors. In addition,
MO-CBS uses the cost vector of π to filter S, which is a
set of collision-free joint paths computed so far, and then
add π into S. MO-CBS terminates when OPEN is empty. At



termination, MO-CBS is guaranteed to find all cost-unique
Pareto-optimal joint paths.

Due to the (possibly) large size of Πo at initialization,
a variant of MO-CBS that employs a tree-wise expansion
strategy (MO-CBS-t) is introduced in [29] to overcome this
difficulty. In MO-CBS-t, root nodes are generated on demand
and one root node is exhaustively searched until OPEN
depletes before the next root is generated. When all roots
are generated and searched, MO-CBS-t terminates and finds
all cost-unique Pareto-optimal joint paths. MO-CBS-t also
enjoys the benefits of identifying the first feasible joint path
quickly. Numerical results [29] show that the first feasible
joint path found by MO-CBS is typically Pareto-optimal or
very close to be Pareto-optimal.

C. Using MO-SIPP as the Low Level Planner

The low level search in MO-CBS requires a single-agent
multi-objective planner that can find all cost-unique (individ-
ual) Pareto-optimal paths for a single-agent while satisfying
a set of constraints. The set of constraints includes both a
set of node constraints {(v, t)}, where the agent is prevented
from entering node v at time t, and a set of edge constraints
{(e, t)}, where agent is prevented from moving through edge
e at time t. In MO-CBS (and MO-CBS-t), NAMOA* is used
as a low level planner to search a time-augmented graph Gt,
where constraints are represented as blocked nodes and edges
in Gt.

To use MO-SIPP as the low level planner, node constraints
{(v, t)}, v ∈ V can be directly considered as nodes in Gt that
are occupied by some dynamic obstacles. Edge constraints
{(e, t), e ∈ E} can be maintained as a lookup table so that
during label expansion, MO-SIPP avoids using edge e at time
t when generating successors with the minimum arrival time.
Additionally, when a label l at the goal node is expanded,
we also need to check whether there exists a node constraint
(v, t) with t > tr(l).
• If there exists such a node constraint, it indicates

that agent can not stay at node v(l) after the arrival
because v(l) is blocked at some future time step. In
this case, MO-SIPP has not yet found a Pareto-optimal
trajectory and this label will be further expanded like
other candidate labels.

• Otherwise, MO-SIPP has found a Pareto-optimal trajec-
tory.

Finally, as MO-SIPP is able to compute all cost-unique
Pareto-optimal trajectories, (like the original NAMOA* in
Gt), the property of MO-CBS is not affected when MO-SIPP
is embedded as the low level planner.

V. NUMERICAL RESULTS

A. Test Settings and Implementation

Our test settings follows the settings in MO-CBS [29]. We
selected four maps (grids) from different categories in [36]
and generated an un-directed graph G by making each grid
four-connected. To assign cost vectors to edges in G, we
first assigned every agent, a cost vector ai,∀i ∈ I of length
M (the number of objectives) and assigned every edge e in

Fig. 2: Comparing the average low level search time with
number of objectives M = 1, 2, 3 in different maps, while
number of agents N = 2 is fixed.

G a scaling vector b(e) of length M , where each element
in both ai and b(e) were randomly sampled from integers in
[1, 10]. The range [1, 10] follows the convention used in [19].
The cost vector for agent i to go through e is the component-
wise product of ai and b(e). If agent i wait in place, the cost
incurred is ai per time step. We use unit vector scaled by
Manhattan distance between each node u ∈ G and the goal
node as the heuristic vector for any states s with v(s) = u,
which underestimates the cost vectors of all trajectories from
s to the goal. We tested the algorithms by varying the number
of objectives (M ) and the number of agents (N ) within a run
time limit of five minutes.

Our comparison involves MOM* [30], MO-CBS-t [29]
and MO-CBS-ts, which “s” stands for MO-SIPP. All al-
gorithms are implemented in Python and compared on a
computer with an Intel Core i7 CPU and 16GB RAM.

B. Low Level Search Comparison

Both MO-CBS and MO-CBS-t use the same low level
planner and we select MO-CBS-t as a baseline to be com-
pared with the proposed MO-CBS-ts. In the implementation
of MO-CBS-t and MO-CBS-ts, all high-level nodes with
non-dominated cost vectors in OPEN are lexicographically
sorted and the minimum one is popped from OPEN. This
enforces a deterministic search order for both algorithms. For
each test instance, the average low level search time per call
t̄instance is computed for both MO-CBS-t and MO-CBS-ts.
Next, for each map, t̄instance is averaged over all instances
and this average (denoted as t̄map) is plotted in Fig. 2.

Fig. 2 demonstrates t̄map in empty, room and maze like
maps with number of objectives (M ) varied from 1 to 3 and
number of agents (N ) fixed at 2. In all maps, and for all the
tested objectives, the low level search in the proposed MO-
CBS-ts runs much faster than the low level search in MO-
CBS-t. Specifically, for M = 2 and the room map, every
low level search in MO-CBS-t on an average requires about
10 seconds while the proposed approach requires less than
one second. For all the objectives, we observed an order of
magnitude improvement in the low level search time using
the proposed approach.

C. Success Rates Comparison

The proposed MO-CBS-ts is compared with MO-CBS-t in
terms of (1) success rates of finding all cost-unique Pareto-



Fig. 3: Success rates of MO-CBS-t (baseline), MOM* (base-
line) and MO-CBS-ts (proposed) about (1) finding all cost-
unique Pareto-optimal joint paths and (2) finding at least
one feasible joint path, within a time limit of five minutes
in different maps with a varying N and a fixed M = 2. Left
column compares MO-CBS-t and MO-CBS-ts while the right
column compares MOM* and MO-CBS-ts.

optimal joint paths and (2) success rates of finding at least
one feasible joint path, within the five minutes time limit.
Note that the first solution computed by both MO-CBS-
t and MO-CBS-ts is not guaranteed to be Pareto-optimal
optimal but has been shown to be empirically near Pareto-
optimal [29]. Additionally, during the test after finding the
first feasible solution, both MO-CBS-t and MO-CBS-ts keep
running in pursuit of the entire cost-unique Pareto-optimal
set. Here, M = 2 is fixed and N varies. As shown in the
left column in Fig. 3, in terms of metric (1), the proposed
MO-CBS-ts outperforms MO-CBS-t in the room setting and
performs no worse than MO-CBS-t in the other two settings.
When N = 4, 6, in the room map, the success rates of (1)
are improved by ≈ 20%. In terms of metric (2), MO-CBS-
ts outperforms MO-CBS-t in all settings. When N = 4, in
the maze map, the success rate of (2) is improved by ≈

Fig. 4: (Left) Risk model. (Right) A risk map where black
cells represents semi-constructed architecture and while cells
are completely safe cells where risk scores are zero. Grey
cells have non-zero risk scores and darker color indicates
higher risk score.

40%. The results show that, with an improved low level
planner, the proposed MO-CBS-ts outperforms MO-CBS-
t. The improvement in metric (2) indicates that the search
process of MO-CBS is sped up by using MO-SIPP since both
MO-CBS-t and MO-CBS-ts are enforced the same expansion
order on the high level (as explained in Sec. V-B) and MO-
CBS-ts is more likely to find the first solution.

Additionally, it’s a bit surprising that the significant im-
provement in the low level search (Fig. 2) leads to only
a moderate or modest improvement in the success rate of
finding all cost-unique Pareto-optimal solutions. The main
reason lies in the complexity of the high level search in
MO-CBS [29] and the enormous size of the Pareto-optimal
set [30]. This result implies the necessity to improve the
high level search in MO-CBS along with the low level
improvement, which is planned as our next step (Sec. VI).

D. Comparison with MOM*

MOM* [30] leverages the idea of subdimensional ex-
pansion [40] to solve MOMAPF, which serves as another
baseline to be compared. As shown in the right column in
Fig. 3, with a fixed M = 2 and a varying N , in terms of the
success rates of finding at least one feasible joint path, MO-
CBS-ts obviously outperforms MOM* in all maps. In terms
of the success rates of finding all cost-unique Pareto-optimal
joint paths, there is no algorithm that outperforms the other
in all settings.

E. Construction Site Path Planning

This section provides a case study to demonstrate an
application of MO-CBS-ts: We consider multiple agents
transporting materials in a construction site [14], [31], [34].
We focus on planning collision-free paths for a set of agents
from their starts and goals while optimizing both path risk
and length. We use a simplified risk model as shown on the
left in Fig. 4. For each cell, its risk score equals the number of
black cells in the proximity, where the black cells represent



Fig. 5: Leftmost plot shows the Pareto-optimal front of the construction site example. The three plots on the right show the
joint path of agents corresponding to the red, green and orange solution respectively.

some semi-constructed architecture. The risk here is possibly
due to the falling items from the architecture or the collisions
with the architecture. We select a map from the “random”
category in [36] and compute the corresponding risk map,
which is shown in Fig. 4 on the right. All cells are made
four-connected for agents to move, and path length is the
total number of moves.

As shown in Fig. 5 (a), the set of Pareto-optimal solutions
trades off between path risk and path length. In solution (joint
path) S1 (Fig. 5 (b)), all agents take shortcuts regardless of
the risks. For example, the blue agent in S1 passes through
many risky nodes by following a shortest path. In solution
S2 (Fig. 5 (c)), all agents take a conservative approach and
follow the safest paths. For example, in the lower right corner
of S2, the light green agent takes a detour to avoid the
brown agent to make both of them safe along their respective
paths. The solution S3 (Fig. 5 (d)) visualizes a Pareto-optimal
solution in the “middle”, where path length and risk are
balanced in some way.

VI. CONCLUSION

This article considers the problem of multi-objective multi-
agent path finding (MOMAPF). For the first time, we develop
a multi-objective version of the well-known safe-interval path
planning (SIPP) algorithm named MO-SIPP and show that
MO-SIPP computes all cost-unique Pareto-optimal trajecto-
ries connecting a given start and goal location in the presence
of dynamic obstacles. We then combine MO-SIPP with MO-
CBS and propose a new algorithm called MO-CBS-ts for
MOMAPF. Our numerical results show that MO-CBS-ts
significantly improves the average low level search time by
an order of magnitude and improves the overall success rates
in general. It is also worthwhile to point out that, although
the proposed MO-SIPP is presented as the low level planner
for MO-CBS, the MO-SIPP is a general single-agent multi-
objective planner and can be applied to other applications
as well, when Pareto-optimal trajectories subject to multiple
objectives is required.

There are several possible directions for future work. First,
one can consider improving the high level search of MO-CBS

by leveraging techniques designed for (single-objective) CBS
(such as [3], [15]) and evaluate their effectiveness in multi-
objective settings. Besides, one can also consider develop
a sub-optimal version of MO-CBS that approximates the
Pareto-optimal set with guarantees by leveraging (single-
objective) bounded sub-optimal CBS [2], [16].

REFERENCES

[1] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni
Stern. Multi-agent pathfinding with continuous time. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 39–45, 2019.

[2] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal
variants of the conflict-based search algorithm for the multi-agent
pathfinding problem. In Seventh Annual Symposium on Combinatorial
Search, 2014.

[3] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin,
Oded Betzalel, and Eyal Shimony. Icbs: improved conflict-based
search algorithm for multi-agent pathfinding. In Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, 2015.

[4] Liron Cohen, Tansel Uras, TK Satish Kumar, and Sven Koenig.
Optimal and bounded-suboptimal multi-agent motion planning. In
Twelfth Annual Symposium on Combinatorial Search, 2019.

[5] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer
Science & Business Media, 2005.

[6] Michael TM Emmerich and André H Deutz. A tutorial on multiob-
jective optimization: fundamentals and evolutionary methods. Natural
computing, 17(3):585–609, 2018.

[7] Erhan Erkut, Stevanus A Tjandra, and Vedat Verter. Hazardous
materials transportation. Handbooks in operations research and
management science, 14:539–621, 2007.

[8] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan
Sturtevant, Robert C Holte, and Jonathan Schaeffer. Enhanced partial
expansion a. Journal of Artificial Intelligence Research, 50:141–187,
2014.

[9] Juan P Gonzalez, Andrew Dornbush, and Maxim Likhachev. Using
state dominance for path planning in dynamic environments with
moving obstacles. In 2012 IEEE International Conference on Robotics
and Automation, pages 4009–4015. IEEE, 2012.

[10] Pierre Hansen. Bicriterion path problems. In Multiple criteria decision
making theory and application, pages 109–127. Springer, 1980.

[11] Samira Hayat, Evşen Yanmaz, Timothy X Brown, and Christian
Bettstetter. Multi-objective uav path planning for search and rescue.
In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 5569–5574. IEEE, 2017.

[12] Wolfgang Hönig, Scott Kiesel, Andrew Tinka, Joseph Durham, and
Nora Ayanian. Conflict-based search with optimal task assignment.
In Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, 2018.



[13] Edward Lam, Pierre Le Bodic, Daniel Harabor, and Peter Stuckey.
Branch-and-cut-and-price for multi-agent pathfinding. pages 1289–
1296, 08 2019.

[14] Edward Lam, Peter J Stuckey, Sven Koenig, and TK Satish Kumar.
Exact approaches to the multi-agent collective construction problem.
In International Conference on Principles and Practice of Constraint
Programming, pages 743–758. Springer, 2020.

[15] Jiaoyang Li, Daniel Harabor, Peter J Stuckey, Ariel Felner, Hang Ma,
and Sven Koenig. Disjoint splitting for multi-agent path finding with
conflict-based search. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 29, pages 279–283,
2019.

[16] Jiaoyang Li, Wheeler Ruml, and Sven Koenig. Eecbs: A bounded-
suboptimal search for multi-agent path finding. arXiv preprint
arXiv:2010.01367, 2020.

[17] Hang Ma, Wolfgang Hönig, TK Satish Kumar, Nora Ayanian, and
Sven Koenig. Lifelong path planning with kinematic constraints
for multi-agent pickup and delivery. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 7651–7658,
2019.

[18] Hang Ma and Sven Koenig. Optimal target assignment and path
finding for teams of agents. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, pages
1144–1152, 2016.

[19] Lawrence Mandow, JL Pérez De la Cruz, et al. A new approach to
multiobjective a* search. In IJCAI, volume 8. Citeseer, 2005.

[20] Lawrence Mandow and José Luis Pérez De La Cruz. Multiobjective
a* search with consistent heuristics. Journal of the ACM (JACM),
57(5):1–25, 2008.

[21] R Timothy Marler and Jasbir S Arora. Survey of multi-objective
optimization methods for engineering. Structural and multidisciplinary
optimization, 26(6):369–395, 2004.

[22] Justin Montoya, Sivakumar Rathinam, and Zachary Wood. Multi-
objective departure runway scheduling using dynamic programming.
IEEE Transactions on Intelligent Transportation Systems, 15(1):399–
413, 2013.

[23] Venkatraman Narayanan, Mike Phillips, and Maxim Likhachev. Any-
time safe interval path planning for dynamic environments. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4708–4715. IEEE, 2012.

[24] Oriana Peltzer, Kyle Brown, Mac Schwager, Mykel J Kochenderfer,
and Martin Sehr. Stt-cbs: A conflict-based search algorithm for
multi-agent path finding with stochastic travel times. arXiv preprint
arXiv:2004.08025, 2020.

[25] Mike Phillips and Maxim Likhachev. Planning in domains with cost
function dependent actions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 25, 2011.

[26] Mike Phillips and Maxim Likhachev. Sipp: Safe interval path planning
for dynamic environments. In 2011 IEEE International Conference on
Robotics and Automation, pages 5628–5635. IEEE, 2011.

[27] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Loosely
synchronized search for multi-agent path finding with asynchronous
actions. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2021.

[28] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Ms*: A
new exact algorithm for multi-agent simultaneous multi-goal sequenc-
ing and path finding. In 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021.

[29] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Multi-
objective conflict-based search for multi-agent path finding. In 2021
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2021.

[30] Zhongqiang Ren, Sivakumar Rathinam, and Howie Choset. Subdimen-
sional expansion for multi-objective multi-agent path finding. IEEE
Robotics and Automation Letters, 6(4):7153–7160, 2021.

[31] Guillaume Sartoretti, Yue Wu, William Paivine, TK Satish Kumar,
Sven Koenig, and Howie Choset. Distributed reinforcement learning
for multi-robot decentralized collective construction. In Distributed
autonomous robotic systems, pages 35–49. Springer, 2019.

[32] Paolo Serafini. Some considerations about computational complexity
for multi objective combinatorial problems. In Recent advances
and historical development of vector optimization, pages 222–232.
Springer, 1987.

[33] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant.

Conflict-based search for optimal multi-agent pathfinding. Artificial
Intelligence, 219:40–66, 2015.

[34] AR Soltani and T Fernando. A fuzzy based multi-objective path
planning of construction sites. Automation in construction, 13(6):717–
734, 2004.

[35] Trevor Scott Standley. Finding optimal solutions to cooperative
pathfinding problems. In Twenty-Fourth AAAI Conference on Artificial
Intelligence, 2010.

[36] Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, TK Kumar,
et al. Multi-agent pathfinding: Definitions, variants, and benchmarks.
arXiv preprint arXiv:1906.08291, 2019.

[37] Bradley S. Stewart and Chelsea C. White. Multiobjective a*. J. ACM,
38(4):775–814, October 1991.

[38] Pavel Surynek, Ariel Felner, Roni Stern, and Eli Boyarski. Efficient
sat approach to multi-agent path finding under the sum of costs
objective. In Proceedings of the Twenty-second European Conference
on Artificial Intelligence, pages 810–818, 2016.

[39] Carlos Hernández Ulloa, William Yeoh, Jorge A Baier, Han Zhang,
Luis Suazo, and Sven Koenig. A simple and fast bi-objective
search algorithm. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30, pages 143–151,
2020.

[40] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[41] J. Weise, S. Mai, H. Zille, and S. Mostaghim. On the scalable multi-
objective multi-agent pathfinding problem. In 2020 IEEE Congress
on Evolutionary Computation (CEC), pages 1–8, 2020.

[42] Jie Xu, Andrew Spielberg, Allan Zhao, Daniela Rus, and Wojciech
Matusik. Multi-objective graph heuristic search for terrestrial robot
design. 2021.

[43] Konstantin Yakovlev and Anton Andreychuk. Any-angle pathfinding
for multiple agents based on sipp algorithm. In Proceedings of the
International Conference on Automated Planning and Scheduling,
volume 27, 2017.

[44] Konstantin Yakovlev, Anton Andreychuk, and Roni Stern. Revisiting
bounded-suboptimal safe interval path planning. In Proceedings of
the International Conference on Automated Planning and Scheduling,
volume 30, pages 300–304, 2020.

[45] Jingjin Yu and Steven M LaValle. Structure and intractability of
optimal multi-robot path planning on graphs. In Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.


	I Introduction
	II Related Work
	II-A Multi-objective Path Planning
	II-B Multi-agent Path Finding
	II-C Safe Interval Path Planning

	III Multi-objective Safe-Interval Path Planning
	III-A Preliminaries
	III-B Multi-objective Problem Formulation
	III-C Algorithm
	III-C.1 Vector valued cost vectors
	III-C.2 Label expansion
	III-C.3 Label comparison
	III-C.4 Filtering and termination

	III-D Analysis

	IV Multi-objective Conflict-based Search
	IV-A MOMAPF Problem Description
	IV-B A Brief Review of MO-CBS
	IV-C Using MO-SIPP as the Low Level Planner

	V Numerical Results
	V-A Test Settings and Implementation
	V-B Low Level Search Comparison
	V-C Success Rates Comparison
	V-D Comparison with MOM*
	V-E Construction Site Path Planning

	VI Conclusion
	References

