Search Algorithms for Teamwise Cooperative Multi-Agent Path Finding

Zhonggiang Ren', Chaoran Zhang', Sivakumar Rathinam? and Howie Choset!

Abstract— Multi-Agent Path Finding (MAPF) computes a set
of collision-free paths for multiple agents from their respective
starting locations to destinations. This work considers a gen-
eralization of MAPF called teamwise cooperative MAPF (TC-
MAPF), where agents are grouped as multiple teams and each
team has its own objective to be minimized. An objective can
be the sum or the max of individual arrival times of the agents.
In general, there is more than one team, and TC-MAPF is thus
a multi-objective planning problem with the goal of finding the
entire Pareto-optimal front that represents all possible trade-
offs among the objectives of the teams. To solve TC-MAPF, we
propose two algorithms TC-CBS and TC-M#*, which leverage
the existing CBS and M* for conventional MAPF. We discuss the
conditions under which the proposed algorithms are complete
and are guaranteed to find the Pareto-optimal front. We present
numerical results for several types of TC-MAPF problems, and
our approach can handle up to 20 agents within a time limit.

I. INTRODUCTION

Multi-Agent Path Finding (MAPF) requires finding a
set of collision-free paths for multiple agents from their
respective starting locations to destinations, which has been
widely studied over the last decade [13]. This problem often
requires optimizing a single objective, such as min-sum, i.e.,
minimizing the sum of individual path costs [11] or min-
max, i.e., minimizing the maximum of individual costs of
the agents [14]. The objective is typically defined over all
the agents and hence the name cooperative path finding [12].
However, in applications such as manufacturing [3], agents
may be grouped into multiple teams, where each team aims
to optimize its own objective. Fig. 1 shows a motivating
example.

We therefore formulate a new problem called teamwise
cooperative MAPF (TC-MAPF). In TC-MAPF, each agent
belongs to at least one team, and teams are not required
to be mutually disjoint to each other. Each team has its own
objective to be minimized such as min-sum or min-max, and
the goal of TC-MAPF is to minimize an objective vector,
where each component of the vector corresponds to the
objective of a team. In the presence of multiple objectives,
in general, there does not exist a single solution that can
simultaneously minimize all the objectives; therefore, we
aim to find a set of Pareto-optimal solutions for the TC-
MAPE. A solution is Pareto-optimal if one cannot improve
over one objective without deteriorating at least one of
the other objectives. TC-MAPF differs from the existing
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Fig. 1: An example of TC-MAPF with two teams, where
team 1 includes the yellow (Y) and blue (B) agents while
team 2 includes the blue (B) and red (R) agents. Team 1 aims
to minimize the maximum arrival times of both agents (so
that they can collaboratively start a task for example), while
team 2 aims to minimize the sum of arrival times (since the
agents are equipped with some fuel-consuming devices and
the total fuel usage is to be minimized for example).

Multi-Objective MAPF [10], self-interested MAPF [2] and
adversarial MAPF [6], and we discuss their differences in
Sec. II.

To solve TC-MAPF, we propose TC-CBS and TC-M*,
which leverage CBS [11] and M* [15] approaches respec-
tively. On one hand, TC-CBS and TC-M* leverage the
conflict resolution technique in CBS and M* by coupling
agents together for planning only when the agents are in
conflict. On the other hand, TC-CBS and TC-M* leverage the
dominance principles [4] to identify and compare candidate
solutions, and are guaranteed to find the entire Pareto-optimal
front. We discuss the applicability of each algorithm to
different problem variants of TC-MAPF, and our numerical
results show that the approach can address up to 20 agents.
Finally, we showcase the possible usage of TC-MAPF to
provide ‘“explanation” of MAPF solutions, a notion that
arises in the field of explainable and trustworthy Al [1], [8].

The rest of this paper begins with a short summary of
the related work in Sec. II and describes our methods TC-
CBS in Sec. IV and TC-M* in Sec. V. We then present the
numerical results in Sec. VI and conclude in Sec. VIIL.

II. RELATED WORK

MAPF [13] often requires optimizing a single-objective,
such as min-sum (also called min-flowtime) or min-max (also
called min-makespan). It can be regarded as a special case
of TC-MAPF where there is only one team that includes
all agents. To solve MAPF problems to optimality, various
methods have been developed, which focus on either min-
sum [11], [15] or min-max [14], [16] criteria. In contrast,
the proposed TC-CBS and TC-M* in this work can be



leveraged to simultaneously handle the min-sum and min-
max objectives by finding a set of Pareto-optimal solutions.

Multi-Objective MAPF [10] differs from MAPF by associ-
ating a vector-cost (rather than a scalar-cost) to the action of
an agent, where each component of the cost vector represents
one objective to be minimized, such as arrival time and path
risk. Multi-Objective MAPF requires minimizing the sum of
accumulated cost vectors over all agents along their paths.
The TC-MAPF differs from Multi-Objective MAPF, since
the action cost of each agent is a scalar, and there are multiple
teams where each team has its own objective.

Other variants of MAPF related to this work include self-
interested MAPF [2], where each agent only pursues its
individually min-cost path and the goal is to design a taxation
scheme so that all agents become cooperative after adding
an additional tax-cost to the agents’ paths. In TC-MAPF, a
similar notion of the self-interested agent arises, when each
agent itself forms a team and aims to minimize its own
arrival time. However, the goal of TC-MAPF is to compute
the entire Pareto-optimal front, which identifies possible
trade-offs between teams’ objectives. Finally, adversarial
MAPF [6] divides agents into mutually disjoint teams, and
aims to find a policy for a selected team so that the agents in
the selected team can navigate to their destinations subject to
any actions other teams can take. In contrast, TC-MAPF does
not consider an adversary but aims to find Pareto-optimal
solutions in a cooperative setting.

III. PROBLEM STATEMENT

Let index set I = {1,2,..., N} denote a set of N agents.
All agents move in a workspace represented as a finite graph
G = (V, E), where the vertex set V represents all possible
locations of agents and the edge set £ C V x V denotes the
set of all the possible actions that can move an agent between
a pair of vertices in V. An edge between u, v € V is denoted
as (u,v) € E and the cost of e € E is a finite positive real
number cost(e) € RT. Let v}, v} € V respectively denote
the initial location and the destination of agent <.

Let a superscript ¢ € [ over a variable represent the
specific agent that the variable belongs to (e.g. v* € V means
a vertex with respect to agent i). Let 7(vi,v}) be a path
that connects vertices v and v} via a sequence of vertices
(v, v}, ..., v}) in the graph G. Let ¢* (7% (v}, v})) denote the
cost value associated with the path, which is the sum of the
cost of all the edges present in the path, i.e., g’ (7% (v}, v})) =
ijlﬁgy___zg_.lco,‘st(v;,véﬂ). Fpr presentation purposes, we
denote 7*(v},v}) simply as 7* when there is no confusion.

All agents share a global clock and they start the paths at
time ¢ = (0. Each action of an agent, either wait or move,
requires one unit of time. Any two agents are said to be
in conflict if one of the following two cases happens. The
first case is a vertex conflict where two agents occupy the
same location at the same time. The second case is an edge
conflict where two agents move through the same edge from
opposite directions between times ¢ and ¢ + 1 for some ¢.

Let {T;,j = 1,2,...,M} denote a set of M teams,
where each team T; C I. Each agent belongs to at least

one team and teams are not required to be mutually disjoint
to each other. Let 777 denote a joint path, which is a set of
individual paths {7*,Vi € T;}. Let g7 denote the objective
value of team 7T that is to be minimized, which is either
the sum or the maximum of the individual path cost of
all the agents in the team T} (i.e. gy ier, 9(7")
or g7 1= max;er, (7). Let m (without any superscript)
denote a joint path of all the agents, which is also referred to
as a solution. Let () := {g(7%9),j = 1,2,..., M} denote
an objective vector, where each component corresponds to
the objective of a team.

To compare two solutions, we compare the objective
vectors corresponding to them. Given two vectors a and
b, a is said to dominate b if every component in a is no
larger than the corresponding component in b and there exists
at least one component in a that is strictly less than the
corresponding component in b. Formally, it is defined as:

Definition 1 (Dominance [4]): Given two vectors a and b

of length M, a dominates b, notationally a > b, if and only
if a(m) < b(m), Ym € {1,2,...,M} and a(m) < b(m),
Im e {1,2,...,M}.
Any two solutions are non-dominated with respect to each
other if the corresponding objective vectors do not dominate
each other. A solution 7 is non-dominated with respect to
a set of solutions II, if 7 is not dominated by any #’ € II.
Among all conflict-free (i.e., feasible) solutions, the set of
all non-dominated solutions is called the Pareto-optimal set,
and the corresponding set of objective vectors is called the
Pareto-optimal front. In this work, we aim to find all cost-
unique Pareto-optimal solutions, i.e., any maximal subset of
the Pareto-optimal set, where any two solutions in this subset
do not have the same objective vector.

IV. TC-CBS

This section first reviews Conflict-Based Search
(CBS) [11] and then describes our method Teamwise
Cooperative Conflict-Based Search (TC-CBS). We then
discuss the relationship of TC-CBS to Multi-Objective CBS
(MO-CBS) [10], and point out the cases where TC-CBS is
incomplete.

A. Review of Conflict-Based Search

Conflict-Based Search (CBS) [11] is a two-level search
algorithm that computes a conflict-free solution to a MAPF
problem. On the high-level, every search node P is defined
as a tuple of (m, g, ), where:

o m=(nt, 7%, ...,7N) is a joint path that connect starts
and destinations of agents respectively.

e g is the scalar cost value of 7 (ie., g = g(n) =
Sierg (7).

e ) is a set of constraints. Each constraint is of form
(i,v,t) (or i, e,t), which indicates agent 7 is forbidden
from entering node v (or edge e) at time t.

CBS constructs a search tree with the root node P,,,: =
(70, g(5), D), where the joint path 7, is constructed by
running the low-level (single-agent) planner, such as A*, for
every agent respectively with an empty set of constraints



while ignoring any other agents. P, is added to OPEN, a
queue that prioritizes nodes based on their g-values.

In each search iteration, a node P = (m, g, )) with the
minimum g-value is popped from OPEN for expansion. To
expand P, every pair of individual paths in 7 is checked for
vertex conflict (4, j,v,t) (and edge conflict (4, j, e, t)). If no
conflict is detected, 7 is conflict-free and is returned as an
optimal solution. Otherwise, the detected conflict (¢, j, v, t)
is split into two constraints (¢, v,t) and (4, v,t) respectively
and two new constraint sets Q | J{¢, v, ¢} and QJ{j,v,t} are
generated. (Edge conflict is handled in a similar manner and
is thus omitted.) Then, for the agent ¢ in each split constraint
(i,v,t) and the corresponding newly generated constraint
set Q' = QJ{4,v,t}, the low-level planner is invoked to
plan an individual optimal path 7" of agent 7 subject to all
constraints related to agent ¢ in Q'. The low-level planner
typically runs A*-like search in a time-augmented graph
with constraints marked as obstacles. A new joint path 7/ is
then formed by first copying 7 and then updating agent i’s
individual path 7% with 7%, Finally, for each of the two split
constraints, a corresponding high-level node is generated and
added to OPEN for future expansion. CBS terminates when
the first conflict-free joint path is found which is guaranteed
to be the min-cost solution.

B. TC-CBS Algorithm

As shown in Alg. 1, the proposed TC-CBS algorithm
follows a similar workflow as CBS. The main differences
are the following. First, given a high-level node P and its
corresponding joint path 7, TC-CBS computes an objective
vector g(my) based on the teams, instead of computing a
scalar cost value g as in CBS. This arises in lines 1 and 14,
when generating the root node and a new high-level node
respectively. Consequently, high-level nodes are organized
in lexicographic (abbreviated as lex.) order in OPEN, and in
each iteration, a lex. min node is popped from OPEN for
processing (line 4). Second, since there are multiple Pareto-
optimal solutions in general, TC-CBS stores all Pareto-
optimal solutions found during the search in a set C (line 7).
To simplify presentation, we denote C as a set of objective
vectors, and note that each vector in C identifies a unique
high-level node and thus a unique conflict-free solution.
Third, to find all cost-unique Pareto-optimal solutions, TC-
CBS terminates when OPEN depletes, while CBS terminates
when the first conflict-free solution is found. Additionally,
every time when a node P, is popped from OPEN (line 4)
or newly generated (line 15), Py is tested for filtering, i.e.,
Py, is discarded if the objective vector in Py is dominated
by or equal to any existing objective vectors in C.

C. Discussion and Properties of TC-CBS

The high-level search in TC-CBS is the same as MO-
CBS [10], while the low-level search is different. In MO-
CBS, each low-level search requires solving a multi-objective
shortest path problem subject to constraints, while the low-
level search in TC-CBS is single-objective.

Algorithm 1 Pseudocode for TC-CBS

1: Compute P,,,+ and insert into OPEN.
2:C 0
3: while OPEN not empty do

4: P, = (ﬂ'kagk,Qk) — OPENpOp()

5: if Filter(P;) then continue > End of iteration
6 if no conflict detected in 7, then

7: add g to C

8 continue > End of iteration
9 Q <+ split detected conflict

10: for all w' € Q) do

11: Ql:QkU{wi}

12: 7t LowLevelSearch(i, ;)

13: 7 < 7y, and then replace 7} (in m;) with 7’

14: g1 < g(m;), which is computed based on teams.
15: Pl:(ﬂl7@7gl)

16: if not Filter(P;) then

17: add P, to OPEN

18: return C

{(x*,7), (g%, 9")} ~

o O

. L2

Conflict (i,j,vt) g5

0.2

Constraint (i,v,¢) Constraint (j,v,t) =) 8

Objective-1
(Team-1)

{(=*,77),(¢" + 8,9} {(=*,77),(¢", ¢’ + A)}

Fig. 2: An illustrative case where TC-CBS is incomplete.
The grey area show the set of objective vectors dominated
by the green solution. Details can be found in the text.

We say a TC-MAPF problem instance is fully cooperative
if each team T},5 = 1,2..., M contains all agents (i.e.,
T; = I). Otherwise (i.e., there exists a team does not include
all agents), the TC-MAPF instance is not fully cooperative. A
problem instance is feasible if there exists a feasible solution.
Given a feasible instance, TC-CBS is said to be complete if
it terminates in finite time. For the fully cooperative TC-
MAPF problem, TC-CBS is guaranteed to be complete, and
is guaranteed to find all cost-unique Pareto-optimal solutions.
The analysis in MO-CBS [10] can be applied to TC-CBS for
fully cooperative TC-MAPF problems, since TC-CBS has the
same high-level search as MO-CBS.

However, for TC-MAPF that is not fully cooperative, TC-
CBS may not be complete (i.e., incomplete): TC-CBS fails
to terminate in finite time even if the problem instance is
feasible. Same as the analysis in [10], the condition for
TC-CBS to be complete is that there is a finite number of
joint paths whose objective vectors are non-dominated by the
Pareto-optimal front. This condition may not hold for TC-
MAPF that is not fully cooperative. We illustrate with an
example as shown in Fig. 2: there are two agents I = {i,j}
and two teams T) = {i},T> = {j}; the objective vector
is (g71,g™*) = (g%, ¢’). Consider the case where a conflict
(i = 1,5 = 2,v,t) is detected, and is split into constraints
(4,v,t) and (j,v,t) during the search, which results in two



Algorithm 2 Pseudocode for TC-M*

Algorithm 4 Pseudocode for DomBackProp

—

1: initialize OPEN with [, = (v,, h(v,))
2 L0, Ic(ly) < 0, afve) < {lo}

3: while OPEN not empty do

4: l <~ OPEN.pop()

5: if SolutionFilter(l) then continue
6: if v(I) = vy then

7: add [ to £ and then continue
8 Ngh(l) < GetLimitedNgh(l)

9: for all I’ € Ngh(l) do

10 Lo () T U (D), (1))

11: BackProp(l, I(1'))

12: if ¥(v(l),v(l")) # 0 then continue
13: if DomCheck(l") then

14 DomBackProp(1,1’)

15: continue

& F) g + he))

17: add I’ to OPEN, add !’ to a(v(l"))
18: add [ to back_set(l"), parent(l’) < I

19: return £

Algorithm 3 Pseudocode for BackProp

I: INPUT: I, Io(l')

2 if Ic(I') ¢ Ic(1) then

3: Ic(l) < Ic()UIc(l)

if [ ¢ OPEN then
add [ to OPEN

for all I” € back_set(l) do
BackProp(l”, Io(1))

A

new high-level nodes (red and green). For either of the two
nodes, one agent’s path cost may increase (as a constraint is
added), while the other agent’s path cost remains the same.
Consider the case where the green node leads to the only
conflict-free Pareto-optimal solution, and the red node still
contains conflicts and leads to further conflict splitting. As
a result, there can be an infinite number of joint paths'
whose objective vectors are non-dominated by the Pareto-
optimal front, and TC-CBS never terminates since OPEN
never depletes.

V. TC-M*

In contrast to TC-CBS, the proposed TC-M* in this section
is complete for all variants of TC-MAPF. We begin with a
full description of TC-M*, and then discuss its properties
and the relationship to the existing M* [15] and MOM* [9].

A. Preliminaries

Let G = (V,€) = G X G x -+ x G denote the joint graph
which is the cartesian product of N copies of G, where each

'One example is that agent i has reached its destination which blocks the
only path for agent j to reach its destination vﬁl. In this case, an infinite
number of high-level nodes will be generated. It remains an open question
whether we can design a mechanism to detect all the corner cases and make
TC-CBS complete for all variants of TC-MAPF.

1: INPUT: [, I > {’ is a successor of [
2: for all I” € a(v(l')) do

if (") = G(t') or §(I") = F(I') then

4: BackProp(l, I (1))

5 add [ to back_set(l")

(95}

vertex v € V represents a joint vertex and e € £ represents
a joint edge that connects a pair of joint vertices. The joint
vertices corresponding to the initial vertices and destination
vertices of all agents are v, = (v}, v2,--- ,vY) and vy =
(vh, 02, vl) respectively.

There can be multiple non-dominated joint path from v,
to any other joint vertex v in G, to distinguish these paths, let
[ := (v, g) denote a label, which is a tuple of a joint vertex v
and an objective g. Each label identifies a unique joint path
m(v,, v) from v, to v with objective vector § = §(m(v,,v)).
To simplify notation, we use v(l), g(l) to denote the joint
vertex and the objective vector related to label I, and use
v¥(l) to denote the vertex of agent i contained in v(l). To
keep track of multiple joint paths at each joint vertex v, let
a(v) denote a set of labels | with v(l) = v.

Similarly to A* search, let heuristic vector /(v) denote an
underestimate of the cost-to-go from joint vertex v, which
is an M-dimensional vector, and define f-vector as f(l) :=
G(1)+h(v(1)). Let OPEN denote a list of candidate labels to
be expanded during the search, where labels are prioritized
in the lex. order based on their f-vectors.

Additionally, let ¢* : V — V denote an individual optimal
policy, which maps the current vertex of an agent to the
next vertex along some individual optimal path towards its
destination. ¢' can be constructed via a pre-processing step,
where the shortest paths from any vertex in G to v’ for
each agent ¢ € I are found via an exhaustive backwards
A* search from v, to any other vertices in G. Finally, let
UV xV — 20 (27 stands for the power set of I) denote
a conflict checking function, which takes two adjacent joint
vertices u,v € G and returns a subset of agents that are in
conflict when transiting from u to v. Let I(I) C I denote
a collision set of label [. Intuitively, it stores the subset of
agents that can run into conflicts during the search process.

B. TC-M* Algorithm

Intuitively, TC-M* begins by searching a sub-graph em-
bedded in G by letting agents follow their individual policies,
and dynamically growing the sub-graph based on agent-agent
conflicts (i.e., collision sets I) until all cost-unique conflict-
free joint paths from v, to vy are found.

Specifically, as shown in Alg. 2, TC-M* first adds the
initial label I, := (v, 2(v,)) into OPEN and initializes £
to be an empty set, which will be used to store labels that
identify cost-unique Pareto-optimal solutions found during
the search. Additionally, at any time during the search, the
collision set of a label that is newly generated is initialized
to be an empty set.
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can address up to 20 agents.

In each iteration (lines 4-18), a label [ with the lex. min
f-vector is in OPEN is popped and processed as follows.
First, procedure SolutionFilter discards [ (line 5), if f )
is dominated by or equal to the f-vector of any existing
solutions in £ (i.e., there exists {* € L such that f () =
f() or f(I*) = f(I), and note that f(I*) = gG(I*) since
h(v(l*)) = h(vq) = 0). If [ is not filtered, the algorithm
checks if v(l) = vq. If v(l) = vq4, a new cost-unique Pareto-
optimal solution is found, the label [ is thus added to £ and
the current iteration ends. If v(l) # vg, I is then expanded
by generating its “limited neighbor” set [15] as follows.

The limited neighbors Ngh(l) is a set of successor labels
of [ (line 8). For each agent i, if i ¢ I(l), agent i is only
allowed to follow its individual policy ¢*(v*(1)). If i € I (1),
agent i is allowed to visit any adjacent vertices of v’(l) in
G. Formally,

() {#w(z)) - ifiglcl)

(") | (W (1),v*(I")) e E ifi e Ic(l)
Limited neighbors of a label [ varies once I (l) changes,
which dynamically modifies the sub-graph embedded in G
that can be reached from .

After generating Ngh(l), TC-M* loops over each of the
labels I’ € Ngh(l) (lines 10-18). Collision checking is
conducted for the transition from v(l) to v(I’), which returns
a set of agents that are in conflict (line 10), and is unioned
with the current collision set I(I’). If I’ has never been
generated before, I~ (1’) is first initialized to be an empty
set before the union operation.

Then (line 11), the collision set of label !’ is back-
propagated via the Backprop procedure as shown in Alg. 3.
To support the collision set back-propagation, a data structure
“back_set” is defined for every label. Intuitively, the back_set
of label [ contains all parent labels from which [ is ever
reached during the search. Collision set I-(I’) is used to
update the collision set of all parent labels recursively (lines
2-7 in Alg. 3), and labels, whose collision sets are enlarged,
are re-inserted into OPEN for re-expansion (line 5 in Alg. 3).

After back-propagating the collision set, if there is no
conflict during the transition from v(l) to v(l’), label I’
is checked for dominance in procedure DomCheck (line

13). Specifically, DomCheck returns true if there exists an
objective vector g(I”) of an existing label I” € a(v(l'))
that dominates or is equal to g(I'). If DomCheck returns
true, label !’ can not lead to a cost-unique Pareto-optimal
solution is thus pruned (line 15). Before being pruned (line
14), another procedure DomBackProp is invoked over label I’
and its parent [ so that the collision sets of ancestor labels of
I’ can still be updated after I’ is pruned. If DomCheck returns
false, label I’ is added to «(v(l’)) and OPEN for future
expansion (lines 16-18). When the algorithm terminates, the
set of solution labels L is returned.

C. Discussion and Properties of TC-M*

Similarly to M* [15], TC-M* leverages the notion of in-
dividual policies, collision sets and back-propagation. Addi-
tionally, TC-M* borrows the technique of handling multiple
non-dominated joint paths from v, to any other joint vertex
as in MOM* [9], which includes the dominance comparison,
SolutionFilter and DomBackProp.

In contrast to TC-CBS, TC-M* is complete for all variants
of TC-MAPF and is guaranteed to find all cost-unique
Pareto-optimal solutions. Intuitively, TC-M* searches the
joint graph G (which has a finite size) by first exploring
a low-dimensional sub-graph and iteratively enlarging the
sub-graph being searched. In the worst case, TC-M* runs
A*-like (or Multi-Objective A*-like) search over the entire
G and will terminate when G is exhaustively searched. We
refer the reader to [9], [15] for more details.

V1. NUMERICAL RESULTS
A. Test Settings

We implemented our TC-CBS and TC-M* in Python and
test on a laptop with Core i7-11800H 2.40GHz CPU and
16 GB RAM. A possible baseline approach that can solve
TC-MAPF with solution quality guarantees is to run MOA*
search directly in the joint graph G. However, the size of G
grows exponentially with respect to the number of agents,
which limits the scalability of this baseline approach [9],
[10], [15]. Therefore, we omitted this baseline method.

We leverage an online dataset for MAPF [13], which
contains grid-like maps and test instances (i.e., pairs of
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Fig. 4: Numerical results of our algorithm TC-M* for differ-
ent types of TC-MAPF problems. The horizontal axis shows
the number of agents (INV), the left vertical axis shows the
success rates (Succ. Rates) while the right axis shows the
number of expansions (#Exp.). TC-M* can handle up to ten
agents in general.

v, and vg). We set a runtime limit of five minutes for
each instance. We test the following four types of problem
instances with the number of agents N ranging from 4 to
20. In each map, there are 25 instances for each IN. The
type-1 problem has two teams and each team includes all
agents. One team has the min-sum objective while the other
team has the min-max objective. Type-2 divides all agents
into two disjoint teams of equal size, and both teams has the
min-sum objective. Type-3 divides agents into disjoint teams,
where each team contains two agents and has the min-max
objective. Type-4 treats each agent as a team.

B. MAPF with Both Min-sum and Min-max Objectives

We begin with the type-1 problem, which can be solved
by both TC-M* and TC-CBS. As shown in Fig. 3, TC-CBS
achieves obviously higher success rates and can handle up
to 20 agents. We report the corresponding statistics of the
number of Pareto-optimal solutions over succeeded instances
here: for all three maps and all Ns that are tested, the
minimum and median number of solutions is one, and the
maximum number of solutions is up to three. It indicates that,
in these instances, the min-sum and min-max objectives can
often be optimized at the same time.

C. Other Variants of TC-MAPF

We then investigate problems of type-2,3,4, which can
be handled by TC-M*. As shown in Fig. 4, TC-M* can in
general handle up to 10 agents for these problems. For type-
4 problem where each agent is a team, we further provide an
example as shown in Fig. 5 with four agents. In this example,
there are eight Pareto-optimal solutions, which identifies all

Fig. 5: An example for type 4 problem, where each agent
(circle) needs to move to its destination (star), and the goal is
to find all trade-offs between agents. In this example, Solu-
tion 7 (highlighted in the table in blue) has the minimum sum
of individual arrival times. This table allows us to answer
explanatory questions about the solutions. More discussion
can be found in the text.

possible trade-offs between all agents. It can be easily proved
(by contradiction) that this set of solutions contains both the
min-sum solution and the min-max solution of all agents.

D. Example: Explanation for MAPF Solutions

Finally, TC-MAPF has the potential to answer explanatory
questions about MAPF solutions. For example, regarding
the instance shown in Fig. 5, consider a possible question
raised by the user of MAPF planners: can agent 1’s arrival
time be reduced without worsening the min-sum objective
of all agents? The table computed by our approach can
provide the answer to the question (which is NO in this
case). Answering explanatory questions may increase trust
of users and transparency of intelligent systems [1], [8].

VII. CONCLUSION AND FUTURE WORK

We formulate a new problem TC-MAPF, which gener-
alizes the conventional MAPF from one team to multiple
teams. We develop two algorithms TC-CBS and TC-M* to
solve TC-MAPF and discuss their properties. We present and
discuss the numerical results for several different types of
TC-MAPF problems to corroborate the performance of the
algorithms. Both algorithms can simultaneously handle min-
sum and min-max bi-objective MAPF. Finally, we showcase
the potential usage of TC-MAPF for explainable Al

There are several directions for future work. One can
investigate if the existing improving techniques (e.g. [5], [7])
can be leveraged to improve the scalability of TC-CBS and
TC-M*. One can also investigate specific variants of TC-
MAPF and design new algorithms towards trustworthy and
explainable Al
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