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MUI-TARE: Cooperative Multi-Agent Exploration
with Unknown Initial Position
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Abstract—Multi-agent exploration of a bounded 3D environ-
ment with the unknown initial poses of agents is a challenging
problem. It requires both quickly exploring the environments and
robustly merging the sub-maps built by the agents. Most existing
exploration strategies directly merge two sub-maps built by dif-
ferent agents when a single frame observation is matched, which
can lead to incorrect merging due to the false-positive detection of
the overlap and is thus not robust. In the meanwhile, some recent
place recognition methods use sequence matching for robust data
association. However, naively applying these sequence matching
methods to multi-agent exploration may require one agent to
repeat a large amount of another agent’s history trajectory so
that a sequence of matched observation can be established, which
reduces the overall exploration time efficiency. To intelligently
balance the robustness of sub-map merging and exploration
efficiency, we develop a new approach for lidar-based multi-
agent exploration, which can direct one agent to repeat another
agent’s trajectory in an adaptive manner based on the quality
indicator of the sub-map merging process. Additionally, our
approach extends the recent single-agent hierarchical exploration
strategy to multiple agents in a cooperative manner for agents
whose sub-maps are merged, to improve exploration efficiency.
Our experiments show that our approach is up to 50% more
efficient than the baselines while merging sub-maps robustly.

Index Terms—Multi-agent Exploration, Real-time Map Merg-
ing, Unknown Initial Pose

I. INTRODUCTION

MULTI-AGENT exploration of an unknown environment
is an important problem in robotics and has been

investigated for decades [1]–[3]. This paper considers the
exploration of a bounded 3D environment with unknown initial
poses of agents, which arises in applications such as planetary
exploration [4], [5], underground mining [6] and search and
rescue [7], [8]. This problem is challenging as it requires (i)
quickly exploring the environment and (ii) robustly detecting
the overlapped sub-maps built by different agents and merging
the sub-maps simultaneously. A common strategy to solve
the problem is to directly merge sub-maps when the scenes
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Fig. 1: Multi-agent exploration using Adaptive Merge. The multi-
agent system starts exploration independently without knowing their
relative poses. After a potential overlap is detected, the adaptive
merge module proceeds to verify the overlap and calculate the
verification gain. If the data association is incorrect, the module
eliminates this association. Otherwise, the overlapped sub-maps are
merged into a single sub-map. Using the information from the
sub-maps, the multi-agent sub-map exploration module plans paths
for exploration. (a) the point clouds merged using the estimated
transform, and (b) the data association between the features of two
agents (i.e. each axis represents the trajectory of one agent).

explored by different agents are detected to be the same [9].
This sub-map merging procedure requires extracting features
from the observation of the scenes and associating the features
across the sub-maps before merging them, which is often
sensitive to false-positive feature matching [10].

To address this issue, sequence matching techniques have
been developed to improve recognition accuracy [11], [12].
While those methods use the features from a sequence of
observations and are more robust for large complex envi-
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ronments, they often require two sub-maps to have a long
sequence of matched observations. When applying these
sequence-based methods to multi-agent exploration, one agent
often has to repeat a large amount of another agent’s trajectory
so that a matched sequence can be detected, which often
reduces the overall exploration time efficiency.

In this paper, we propose MUI-TARE (Multi-agent TARE
with Unknown Initial position), a multi-agent lidar-based
exploration system that aims to intelligently balance between
sub-map merging robustness and exploration efficiency. As
shown in Fig. 1, the system has two features: adaptive
merging and cooperative multi-agent exploration. First, MUI-
TARE uses active verification in an adaptive way, building
on AutoMerge [11], a novel framework for merging large-
scale maps. With the help of AutoMerge, MUI-TARE can
assess the quality score of the current feature association and
only increase the overlaps when needed to reach a certain
threshold of feature matching quality. This enables agents to
repeat another agent’s viewpoints in an adaptive manner, based
on the quality score, which reduces duplicated exploration
and improves the overall exploration efficiency. Second, MUI-
TARE employs a hierarchical cooperative multi-agent planning
strategy for exploration, which builds upon the single-agent
exploration planner TARE [13]. This approach first plans
a coarse global path that visits the areas to be explored
based on the global information of the agent’s map and then
plans a detailed local path to explore the current local area
around the agent. Instead of naively applying this strategy to
multiple agents, our approach plans for agents cooperatively
when possible: it begins by planning each agent independently
(before any sub-map is merged) and coordinates the agents
when their sub-maps are merged.

The contributions of this paper are:
• MUI-TARE, a multi-agent sub-map-based planning

framework for autonomous exploration of large-scale 3D
environments with unknown initial relative poses.

• An adaptive merge method, including active merge dis-
tance estimation (as shown in Eq. 2), fallback policy
(as shown in Sec. IV-B), and active merge (as shown in
Algorithm. 1), which allows MUI-TARE to intelligently
interact with AutoMerge to ensures both the exploration
efficiency and the sub-map merging robustness.

• Extensive tests of the methods in different environments,
where (i) our adaptive merge method leads to up to
29% higher exploration efficiency than the existing active
verification strategy while maintaining the robustness in
the sub-map merging process [9]; and (ii) our cooperative
multi-agent planning reduces the overall exploration time
for up to 52% than naively applying TARE to multiple
agents without cooperation.

II. RELATED WORK

A. Autonomous Exploration

Single-agent exploration has been extensively studied in
both 2D and 3D, and the approaches include frontier-
based [14]–[16], receding horizon sampling-based [17], in-
formation theoretic approaches [18], [19], traveling salesman-

based [13], etc. Multi-agent exploration is more challenging
than single-agent and existing work has focused on communi-
cation limitation [20], sub-map merging when initial positions
of agents are unknown [21], allocating the unexplored areas
to agents in a cooperative manner [1], etc.

This paper limits its focus to the problem where agents’
initial poses are unknown. Existing multi-agent exploration
methods are mostly limited to a 2D environment [1], [9],
[21], [22], and extending them to 3D leads to many challenges
such as the increased amount of sensory data, a large number
of frontiers (i.e., the boundary between the explored and
unexplored areas), the increased risk of feature mismatch when
merging the sub-maps. We compare our MUI-TARE against
two baselines based on [9], [13].

B. Sub-map merging and data association

Sub-map merging problems in 3D require integrating dif-
ferent sub-maps together, and the map is usually represented
as 3D point clouds, occupancy grids [23], [24], or 3D
meshes [25]. The point clouds based methods mainly rely
on geometric-based point cloud registration to convert the
point clouds into local 3D maps. Its performance is highly
dependent on the robustness of 3D geometric features. This
paper considers a lidar-based multi-agent system where maps
are represented as point clouds. To merge sub-maps generated
by each agent accurately and robustly, the SLAM community
has developed many methods by leveraging distinguishable
semantic objects [11], [26], bag-of-words vectors [27], learned
full-image descriptors [28], and sequence-based place recog-
nition [12], [29], to name a few. Among them, our prior
work AutoMerge [11] provides a large-scale map alignment
approach for multi-agent systems by leveraging a novel spheri-
cal harmonic feature extraction method for viewpoint-invariant
place recognition and an adaptive sequence alignment method
for accurate loop-closure detection. In most SLAM systems,
the agents are passive [11], [25], i.e., the motion of the
agents cannot be controlled. In multi-agent exploration, motion
planning for agents is needed to achieve both high exploration
efficiency and high-quality sub-map merging.

III. PROBLEM STATEMENT

Let Q ⊂ R3 denote a bounded space to be explored and
let Qtrav ⊆ Q denote the traversable space in Q. Let
S ⊂ Q denote all the surfaces in the Q, which represents
the generalized boundary between obstacle and obstacle-free
space. Let I = {1, 2, . . . , N} denote a set of N agents
with unknown initial poses in Qtrav. Agents are allowed to
exchange information with a central station at any time. Let
ut
i = {put

i
, qut

i
}, put

i
∈ Qtrav denote a viewpoint of the sensor

onboard agent i ∈ I at time t with put
i

and qut
i

denoting the
position and orientation of the sensor respectively. For each
viewpoint, the surface perceived is represented as Scov

ut
i

. Let τi
denote a path of agent i ∈ I , and let dist(τi) represent the
distance traveled by the agent along the path. A sequence
of viewpoints U i = {u0

i , u
1
i , . . . , u

T0
1 } ⊂ Qtrav is visited

along the path, and the path must satisfy the kinodynamic
constraints of the agent. The goal of the problem is to plan a set
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Fig. 2: The overall framework of MUI-TARE. The overall system comprises two components: the adaptive merge and multi-agent sub-
map-based exploration planner. In the adaptive merge module, the inner connections of the agents are increased by actively exploring the
overlapped region. The merged sub-map is provided along with the relative pose of agents on the sub-map. Given the sub-map, the MUI-
TARE uses a multi-agent sub-map-based exploration planner for the exploration path planning of each agent.
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Fig. 3: Adaptive merge. During the exploration process, once a
new inner connection is detected, the agent with a shorter distance
to the overlap will be used for adaptive merge. This agent will
verify and increase the inner connection by actively exploring the
potential overlap region. This merge process will finish until the inner
connection was proved to be an incorrect data association or the sub-
maps got merged.

of kinodynamically feasible paths τ = {τ1, τ2, . . . , τN} such
that the perceived surface of all agents’ viewpoints along the
paths covers S (i.e.,

⋃N
1

⋃Ti

0 Scov
ut
i

= S) and the longest travel
distance of all the paths (i.e., maxi∈I dist(τi)) is minimized.

IV. METHOD

This section begins with a system overview of MUI-TARE
in Sec. IV-A. We then discuss the adaptive merge algorithm
in Sec. IV-B. Finally, we present the hierarchical coopera-
tive multi-agent exploration method used in MUI-TARE in
Sec. IV-C.

A. System Overview
As shown in Fig. 2, the entire system consists of multiple

agents and an MUI-TARE server. During the exploration,

the point clouds collected by the agents are sent to the
server, and the server plans and sends the paths to the agents
for execution. MUI-TARE (Fig. 2) consists of two major
components: an adaptive and active map merging module,
and a multi-agent sub-map exploration module. The map
merging module merges the segments (i.e., the accumulated
point cloud) of agents into sub-maps and estimates the relative
pose of agents based on the merged sub-maps. Here, the sub-
map means the map that is formed by a group of agents whose
relative transform is known. Given the point clouds from
different agents, our approach detects the potential overlap via
AutoMerge server [11]: if two series of frames (i.e. the point
clouds at a certain pose) are matched, we say a new inner
connection is established between agents. Then, the server
stops the path planning for exploration and switches to an
adaptive merge planner to plan a path for the nearby agent to
verify if this inner connection is a true overlap. Once the inner
connection is confirmed, the nearest agent is further navigated
to increase the overlap until this new inner connection satisfies
the sub-map merge condition. Finally, the overlapped sub-
maps are merged into a single sub-map, and the relative poses
of the agents in the merged sub-map are computed.

Based on the sub-maps computed by the map merging
module, MUI-TARE runs a hierarchical path planner for each
sub-map to plan paths for agents to explore the environment.
Specifically, a global coarse path is first planned for agents
to visit all the sub-space to be explored. In each sub-space
of an agent, a detailed local path is planned to cover all
the surfaces in it. MUI-TARE runs the sub-map merging
and multi-agent exploration in parallel to explore the entire
traversable workspace.

B. Adaptive Map Merging

During the exploration, MUI-TARE maintains a factor graph
G = {V,E} to represent the inner connections between the
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Algorithm 1 Pseudo-code Adaptive overlap estimation
1: while ExplorationNotFinished() do
2: MatchedSequence ← AutoMerge()
3: for sequence in MatchedSequence do
4: if !IsMatchValid(sequence) then
5: Remove(sequence)
6: continue
7: inner connection ← ConnectionEval(sequence)
8: T ← TransformEval(sequence)
9: if inner connection < threshold then

10: dist ← EstimateDist(inner connection)
11: ActiveMerge(T, dist)
12: else
13: SubmapMerge(T)

segments of agents. Let V = {v1, ..., vN} denote the nodes of
G which represent the segment obtained by each agent, and the
edges E = {ωi,j} denote the connections between segments,
where ωi,j is the inner connection between vi and vj . In
AutoMerge [11], for place recognition, the inner connection
of two segments is determined by the overlap length (i.e., the
number of consecutive matched frames) and the difference of
place recognition descriptors. The inner connection is more
stable (higher score) with similar features and longer overlap
length and is defined as follows.

ωi,j =

e
−

∥Fi−Fj∥
2
2+Cw

2L2
i,j

+ϵ i ̸= j,

0 i = j,
(1)

where Fi, Fj are the concatenation of the feature descriptors
extracted from the overlap of vi, vj , Li,j represents the overlap
length between vi, vj . Cw, ϵ are hyper-parameters, where Cw

tunes the dependence of ωi,j on the overlap length, and ϵ is a
constant number to avoid zero-division.1

To merge sub-maps, only the segments vi, vj with ωi,j larger
than a certain threshold are merged. The relative pose between
agents, represented by a transform matrix, can be determined
after merging the sub-maps. However, a stable inner connec-
tion usually requires a long overlap distance which is hard
to satisfy when agents are exploring independently without
knowing others’ poses. Thus, using a shorter sequence of
matched frames for overlap detection is necessary to increase
the chance that overlap is detected. However, simply using
a shorter matched sequence during exploration may cause
incorrect data association and large errors in the transform.

To tackle this issue, our adaptive merge module employs
a proactive approach to enable the agent to verify the data
association and expand the overlap length through a planned
path (Fig. 3). As shown in Algorithm 1, during the exploration
process, MUI-TARE periodically calls AutoMerge to match
the point cloud from agents, which returns a list of matched se-
quence pairs called Matched Sequence. The proposed method
then loops through all the matched sequence pairs in the
Matched Sequence. If the sequence pair has been proven to be
invalid previously, it is removed from the Matched Sequence.
Otherwise, the inner connection between the two sub-maps is
evaluated using Eq. 1 along with its transform matrix T . If

1ϵ is set to 1e−4 in our implementation.

it satisfies the merge condition, the sub-map merge process
is initiated with the graph G being updated. However, if the
merge condition is not fulfilled, the planner selects a Merge
Agent (MA) whose distance to overlap is shorter and initiates
the active merge process to increase the inner connection.

The planner first plans a path for the Merge Agent to move
back to the overlapped region by doing A∗ search on its past
trajectory. Once the Merge Agent reaches the overlap, it will
be navigated to visit the frame viewpoints (i.e. the viewpoint
where the agent perceived the frame for place recognition [11])
of the overlapped agent to increase the overlap length. Denote
the frame viewpoint pose of that agent can be transformed to
the coordinate of Merge Agent using T . To assist the path
planning of active merge, an estimation of the distance that
the agent needs to travel is precomputed. For the correctly
matched frames, the feature difference ∥Fi − Fj∥ is close to
zero. Thus, the predicted merge distance can be estimated by:

Adist = Lthresh
i,j − Lt

i,j

=
√
Cw(−

√
Lt

i,j
2 + ϵ

2

∥Fi − Fj∥22 + Cw
+

√√√√ Lthresh
i,j

2
+ ϵ

2

∥F̂i − F̂j∥22 + Cw

)

=
√
Cw(

√
1

2 lnωt
i,j

−
√

1

2 lnωthresh
)

(2)
where the ωt

i,j is the current inner connection, ωthresh is the
threshold of the inner connection to guide map merging, and
F̂i, F̂j are the expected feature descriptors when their overlap
length reaches the threshold. Adist is the estimated distance
the agent needs to travel to establish a stable inner connection.

Based on that, the adaptive merge planner plans a path
for the Merge Agent to visit Adist frame viewpoints of the
overlapped agent outside of the overlap. We use the greedy
strategy to navigate the agent to the closest uncovered frame
viewpoint, due to its fast running speed. To address the
possibility of encountering incorrect data association during
the adaptive merge, a failure detection mechanism is used.
In order to evaluate the increase of inner connection versus
the duration of the adaptive merge, we have defined the
verification gain as:

G(i, j, t) =
ωt
i,j − ωt0

i,j + Ct

∥t− t0∥+ ϵ
(3)

where, ωt
i,j is the current value of the inner connection, ωt0

i,j

is the value of the inner connection before the agent starts
to actively increase the overlap. Ct is the hyper-parameter to
control the dependence of G(i, j, t) over time.2

During the adaptive merge process, if an incorrect data
association is encountered during the active merge, the overlap
area is not expected to increase through the active merge.
Thus, the verification gain would decrease as the active merge
duration increases. When the verification gain falls below a
certain threshold, the server notifies the robot to exit the active
merge and labels the inner connection as invalid. Otherwise,
the agent keeps active merge until it meets the sub-map merge

2ϵ is set to 1e−4, Ct is set to 2 in all the simulation environments.
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Fig. 4: Multi-agent global planning on sub-map. The global
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Algorithm 2 Pseudocode for hierarchical planning
1: for m := 1 to M do
2: D’ ← GetDistanceMatrix()
3: {gτm

1 , ...gτm
Km
} ← GlobalP lanner(D’)

4: for k := 1 to Km do
5: localτm

k ← LocalPlanner()
6: τm

k ← PathConcatenate(globalτm
k ,local τm

k )

7: return {τ1
1 , . . . , τ

M
KM
}

requirement. Once the reliable inner connection between sub-
maps is established, the sub-maps are merged into a single
sub-map as described in [11].
Remark. This module uses the existing AutoMerge paper [11]
for overlap detection. However, in order to intelligently bal-
ance the robustness and efficiency during exploration we de-
veloped several techniques including the active merge distance
estimation (Eq. 2), verification and fallback policy (Eq. 3), and
adaptive merging algorithm (Algorithm 1).

C. Multi-agent exploration in sub-maps

MUI-TARE extends a state-of-the-art single-agent explo-
ration method TARE to multiple agents. The transform of
agents in each sub-map is given by the adaptive merge module,
and the paths for agents are planned based on these sub-
maps. Let m = 1, 2, . . . ,M be the identifier of the sub-
maps, where M is the total number of sub-maps. Initially,
each sub-map contains only an agent, and M = N . After
merging sub-maps, M decreases, and let Km denotes the
number of agents in sub-map m. In each sub-map, a similar
subspaces-based representation as mentioned in TARE [13] is
used. It divides the workspace Qm into even subspaces. During
exploration, the status of the subspace is set to “exploring”,
“explored”, or “unexplored”. If all the surfaces in the subspace
are covered, the subspace is “explored”. When the subspace
contains both uncovered and covered surfaces, the subspace
is “exploring”. At the same time, for the subspace that is
fully uncovered, the subspace is “unexplored”. Once new
frontiers (dividing points between known and unknown area)

are detected in the “unexplored” subspace, this subspace is
assigned the “exploring” label. Similarly, if all the surface in
the “exploring” subspace is covered, the subspace is converted
to “explored” status.

The full exploration path is planned by combining the
detailed local path from the local planner and the coarse global
path from the global planner. For the local planner, we use
the same planner as the one in TARE. It first samples a set of
viewpoints that cover the surface in the subspace. Then, a local
path is planned by solving the traveling salesman problem
(TSP) that visits those viewpoints with the shortest distance.

As shown in Fig. 4, to minimize the overall travel cost
among the paths of all agents, we designed a new global
planner. Our global planner compute a set of global paths
gτm = {gτm1 , . . . ,g τmKm

} for Km agents in the sub-map m to
travel through all the “exploring” subspace. Since the agents
travel in parallel, in order to minimize the overall travel time,
the planner tries to minimize the maximum travel distance
among all the agents:

min(d(gτm)) = min
trajectory

( max
agents

(d(gτm1 ), ..., d(gτmKm
))) (4)

Where d(·) denotes the total length of the given global path.
This problem can be formulated as a so-called min-max multi-
depot vehicle routing problem (MDVRP) [30], which is known
as an NP-hard problem. To solve it, we choose to use heuristic
methods [30] due to their short runtime and high-quality
solution in practice.

As shown in the Algorithm 2, for M sub-maps, the distance
between all the exploring cells and agents in each sub-map
is calculated to form the distance matrix D′. This distance is
obtained by running A∗ search on the roadmap acquired during
the exploration process. Based on the distance matrix D′, we
use the aforementioned min-max MDVRP method to get Km

global coarse paths {gτm1 , ...gτmKm
} for Km agents in the sub-

map m. With the local path planned by the local planner,
each agent replaces the part of the global path that falls in the
subspace with its own local path to create the full exploration
path. Finally, these full exploration paths {τ11 , . . . , τMKM

} are
sent to all the agents for execution.
Remark. MUI-TARE uses a similar representation for the
workspace and local planning method as in TARE [13]. MUI-
TARE uses a new cooperative global planner for multi-agent
global planning as shown in the Algorithm 2.

V. EXPERIMENTS

A. Experiment Setup

We test MUI-TARE in several different simulation envi-
ronments. Each experiment consists of multiple agents and
a central server, each on a different computer. The agents
are simulated in Gazebo, and each agent is equipped with a
simulated 360-degree Velodyne Lidar. The robots are assumed
to be omnidirectional, and the motion planning for the robots
is handled by the local planner [13]. In addition, an IMU
is fused with the Lidar data for state estimation. During the
experiment, the maximum speed of the robot is 3 m/s. In our
implementation, the simulated environment is divided evenly
into sub-spaces, where each sub-space is a 10m×10m×5m cell.
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Fig. 5: Merged map of two agents and feature matching matrix. (a)(b)(c) are the result of fusing submap from two agents with varying
lengths of overlap. The green and red dots represent the selected positions of the agents. (d)(e)(f) are the feature matching matrices obtained
by two robots with different overlaps. In (a)(d), multiple mismatched overlaps exist in the feature matching matrix, which leads to an inability
to obtain the correct transformation between two agents. Figure (b)(e) depicts that a short and unstable transformation is obtained, resulting
in a deviation in the merged map. However, in (c)(f), a longer overlap is obtained with a higher score, resulting in a more accurate map.
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Fig. 6: Simulation environments. Visualization of the environments.
(a) Campus. (b) Multi-storage Garage. (c) Forest. (d) Agriculture.

We use the ROS multi-master communication package [31]
for data exchange between the agents and the server. We only
transfer the point clouds collected by agents and the waypoints
computed by the server, and the average bandwidth needed for
an agent is 786 KB/s in our experiments, which is similar to
the recent literature [9]. The global planner in MUI-TARE
re-plans at 1 Hz. As shown in Fig. 6, we run tests in four
simulation environments from [32].

• Campus (340m × 340m): A part of the Carnegie Mellon
University campus, containing undulating terrains and
convoluted environment layout.

• Multi-storage Garage (140m × 130m, 5 floors): A 3D
environment with multiple floors and sloped terrains.

• Forest (150m × 150m): A environment consists mostly
of trees and a couple of houses.

• Agriculture (100m × 100m): A flat, outdoor environment
containing a barn, fences, and a medium-sized solar farm.

All the experiments are conducted on the server with CPU
of i5-11400 and GPU of RTX-3060, and the client with CPU
of i7-6700 and GPU of GTX-1060.

B. Adaptive Merge Evaluation
1) Baselines: We compare MUI-TARE against the follow-

ing baseline methods.

(a) (b)

(c) (d)

Fig. 7: Result of Test 1. Comparison of our adaptive merge with the
Passive-Explorer in terms of exploration volume versus time.

• Passive-Explorer: This baseline modified the map merge
module compared to our proposed method by directly
applying the idea of [11] to our exploration planner.
Specifically, the map merge module now passively re-
ceives sensor data, and the sub-map merge process occurs
until a stable overlap is detected. The same exploration
planner for multi-agent exploration is adopted, ensuring
consistency and efficiency throughout the entire system.

• SMMR-Explorer: This baseline leverages the idea in [9]
by using an aggressive merge strategy where the sub-
maps are merged once the overlap is detected without
any verification. Similarly, the same planner is used for
multi-agent exploration.

2) Results and Discussion: In comparison with Passive-
Explorer, Fig. 7 shows the explored volume against time
while Table I shows the exploration efficiency. In all four
simulation environments, our MUI-TARE outperforms the
Passive-Explorer in terms of total exploration time. As shown
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: Exploration efficiency & planning runtime. (a), (e) represent the exploration efficiency and planning runtime in the Campus
environment. (b), (f) represent the result in the Garage environment. (c), (g) indicate the result in the Agriculture environment. (d), (h) show
the result in the Forest environment. As shown in the plot, our method shows significant improvement over the mTARE, while keeping the
planning runtime in a reasonable range.

TABLE I: Exploration time(s) need for Adaptive Merge compared
with Passive-Explorer. We omit the results for SMMR-Explorer
because it fails to complete the exploration.

Env
Passive-Explorer SMMR-Explorer ours
N=2 N=3 N=2, 3 N=2 N=3

Campus 1226.89 930.33 N/A 951.45 818.36

Garage 2250.88 1600.67 N/A 1665.11 1022.92

Forest 1132.24 928.65 N/A 1039.87 871.89

Agriculture 686.02 434.62 N/A 469.64 330.83

in Fig. 7(a), we observed that our method is 9% ∼ 35% faster
for two agents, and 7% ∼ 56% faster for three agents.

We then compare our method against SMMR-Explorer
which both use AutoMerge for map merging. As shown in
Fig. 5(a), the aggressive strategy in SMMR-Explorer can
lead to incorrect data association in our tests, which results
in an incorrect map after merging. As shown in Fig. 5(b),
SMMR-Explorer can also lead to large errors in the computed
transform matrix. In comparison, Fig. 5(c) shows the merged
map using our approach which results in robust map merging
and small errors in the transform matrix. To summarize, due
to the adaptive exploration strategy, our MUI-TARE achieves
higher exploration efficiency than Passive-Explorer and more
robust map merging than SMMR-Explorer.

C. Multi-Agent Exploration Evaluation

This section compares our MUI-TARE with a naive exten-
sion of TARE to multiple agents. Specifically, we introduce
multi-agent TARE (mTARE) as a baseline, which plans for
each agent independently without planning multiple agents
together after merging.

1) Results: We compare our method against mTARE in all
four environments with 2 and 3 agents. As shown in Fig. 8,
the upper plots show the explored volume versus exploration
duration while the lower plots show the runtime of the plan-
ning during the exploration. We present the exploration time

TABLE II: Exploration efficiency & runtime for multi-agent ex-
ploration with mTARE. The number in brackets shows the standard
deviation of planning runtime.

Env Metrics
mTARE Ours

N=2 N=3 N=2 N=3

C
am

pu
s Exploration Time (s) 1350.83 1234.36 951.45 818.36

Global Plan Runtime (ms)
8.18 8.34 11.48 17.30

(±10.37) (±8.95) (±14.99) (±19.78)

G
ar

ag
e Exploration Time (s) 2502.13 1989.09 1665.11 1022.92

Global Plan Runtime (ms)
9.99 9.99 18.93 23.19

(±11.52) (±12.15) (±34.64) (±31.16)

Fo
re

st Exploration Time (s) 1178.07 932.70 1039.87 871.89

Global Plan Runtime (ms)
6.39 7.87 9.68 13.77

(±6.64) (±10.37) (±10.35) (±14.64)

A
gr

ic
ul

tu
re Exploration Time (s) 591.02 420.03 469.64 330.83

Global Plan Runtime (ms)
2.75 7.49 4.67 6.72

(±3.69) (±7.77) (±6.70) (±8.27)

and planning time in Table. II. It shows that the exploration
time of our method is 13% ∼ 52% faster than mTARE for
two agents. For three agents, our MUI-TARE is 7% ∼ 51%
faster than mTARE. This result verifies the benefit of the multi-
agent global planning strategy used in MUI-TARE. With the
help of global planning in MUI-TARE, the agents can finish
the exploration in a shorter time.

Additionally, Table. II shows the average local planning and
global planning runtime per call in MUI-TARE and mTARE.
We observed that the global planning time grows as the
number of agents increases. However, the planning time is
still relatively short in the 3-agents case. Finally, as shown in
Fig. 8(a), by increasing the number of agents from one to two,
the time required to finish the exploration (i.e., the time when
the explored volume stop increasing) is reduced by roughly
36%. However, by increasing the number of agents from
two to three, this reduction in exploration time is only about
16%. This indicates a diminishing return when increasing the
number of agents in an exploration task.
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VI. CONCLUSIONS AND FUTURE WORK

This paper presents MUI-TARE, a multi-agent cooperative
method for exploration with the unknown initial position.
MUI-TARE intelligently balances the robustness of sub-map
merging and exploration efficiency, by using an adaptive
approach for map merging. Additionally, MUI-TARE extends
the recent single-agent hierarchical exploration strategy to
multiple agents in a cooperative manner by planning path of
multiple agents together after their sub-maps are merged to
further improve exploration efficiency. Our numerical results
verifies the benefits of our approach.

For future work, one can decentralize MUI-TARE where
no global communication is required. In addition, this work
mainly focuses on the problem where the initial poses of
agents are unknown. One can extend MUI-TARE to address
the case where partial prior knowledge about the initial agent
pose is available. In MUI-TARE, the adaptive merge is never
called after the sub-maps are merged. One can develop a
long-term adaptive merge mechanism that seeks to further
improve the quality of the merge after the sub-maps are
merged. Furthermore, this paper primarily focuses on global-
level coordination, it is possible to further consider local-level
coordination among agents to improve exploration efficiency.
Finally, one can also consider combining MUI-TARE with
[33] to ensure agent-agent collision avoidance constraints
when exploring cluttered space using multiple robots.
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